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1 Classical scalar fields

Classical field theory. The action of a system described by classical mechanics is
given by

S =

t2∫
t1

dtL (qi(t), q̇i(t)) =

∫
dt

(
1

2

∑
i

q̇2
i − V (q1 . . . qn)

)
. (1.1)

The transition to classical field theory proceeds via the replacements

qi(t)→ Φ(x, t)→ Φ(x) , q̇i(t)→
∂Φ(x, t)

∂t
→ ∂µΦ(x) , (1.2)

because in a relativistic theory the time derivative can only appear as a part of ∂µ.
The action then takes the form

S =

∫
dtL

(
Φ(x), ∂µΦ(x)

)
=

∫
V

d4xL
(
Φ(x), ∂µΦ(x)

)
, (1.3)

where L is called the Lagrangian density or simply the Lagrangian of the theory.
To obtain the equations of motion, we vary the action with respect to Φ and ∂µΦ

in a given volume V with the boundary condition {δΦ, δ(∂µΦ)}
∣∣
∂V

= 0. Hamilton’s
principle of stationary action δS = 0 then entails

0
!

= δS =

∫
d4x

[
∂L
∂Φ

δΦ +
∂L

∂(∂µΦ)
δ(∂µΦ)

]

=

∫
d4x

[(
∂L
∂Φ
− ∂µ

∂L
∂(∂µΦ)

)
δΦ + ∂µ

(
∂L

∂(∂µΦ)
δΦ

)]
,

(1.4)

where we interchanged the variation with the derivative and performed a partial in-
tegration. The second bracket is a total derivative and can be converted to a surface
integral via Gauss’ law. It is zero because the field and its derivative vanish at the
boundary: ∫

V

d4x ∂µ F
µ =

∫
∂V

dσµ F
µ = 0 . (1.5)

The remaining integrand must also vanish because δΦ is an arbitrary variation. This
leads to the Euler-Lagrange equations of motion:

∂L
∂Φ
− ∂µ

∂L
∂(∂µΦ)

= 0 . (1.6)

If the Lagrangian contains several fields Φi(x), one simply has to sum over them in
Eq. (1.4) and the equations of motion hold for each component separately.

Finally, let’s generalize the Hamiltonian formalism to the field-theoretical descrip-
tion. For a discrete system, the canonical conjugate momentum and Hamilton function
are given by

pi(t) =
∂L

dq̇i(t)
, H =

∑
i

q̇i pi − L . (1.7)
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In the continuum limit, the conjugate momentum becomes the canonically conjugate
momentum density Π(x),

p(x, t) =
∂L

∂Φ̇(x, t)
→ Π(x) =

∂L
∂Φ̇(x)

, (1.8)

and the Hamilton function acquires the form

H =

∫
d3x

(
Π(x) Φ̇(x)− L

)
=:

∫
d3xH(x) , (1.9)

where H(x) is the Hamiltonian density.

Real scalar field and Klein-Gordon equation. We start with the simplest exam-
ple of a field theory. It contains only one type of field: a real scalar field Φ(x) = Φ∗(x).
What are the possible terms that can appear in the Lagrangian? L must be a Lorentz
scalar, so it can only depend on Φ and ∂µΦ ∂µΦ (and higher powers of these expres-
sions). The combination ∂µ∂

µΦ = 2 Φ is a total derivative, so it doesn’t change the
equations of motion. Based on these considerations we write

L =
1

2
∂µΦ ∂µΦ− 1

2
m2Φ2 − V

(
Φn,Φn(∂Φ)m

)
. (1.10)

The first two terms define the Lagrangian for a free scalar field, whereas the potential
V contains higher possible interaction terms.1 The action is S =

∫
d4xL, and we can

check that the mass dimensions work out correctly:

[S] = 0, [d4x] = −4, [L] = 4, [Φ] = 1, [∂µ] = 1, (1.11)

and therefore the parameter m has indeed the dimension of a mass. Discarding the
interaction terms (which we will always do in this chapter, hence ‘free fields’), we can
easily work out the Euler-Lagrange equation:

∂L
∂Φ

= −m2Φ ,
∂L

∂(∂µΦ)
= ∂µΦ , ∂µ

∂L
∂(∂µΦ)

= ∂µ∂
µΦ = 2Φ , (1.12)

and thereby arrive at the Klein-Gordon equation:

(2 +m2)Φ = 0 . (1.13)

To derive the Hamiltonian density, we have to find the conjugate momentum:

L =
1

2

(
Φ̇2 − (∇Φ)2 −m2Φ2

)
⇒ Π(x) =

∂L
∂Φ̇(x)

= Φ̇(x) , (1.14)

and therefore we obtain

H = Π Φ̇− L = Π2 − L =
1

2

(
Π2 + (∇Φ)2 +m2Φ2

)
. (1.15)

1In the quantum field theory, renormalizability will limit their form to Φ3 and Φ4 interactions.
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The solutions of the Klein-Gordon equation are plane waves e±ipx with dispersion
relation p2 = m2 ⇒ p0 = ±

√
p2 +m2 = ±Ep, so we can write its general solutions as

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
a(p) e−ipx + a∗(p) eipx

) ∣∣∣
p0=Ep

. (1.16)

The overall normalization with (2π)−3/2 and the factor 2Ep in the integral measure
are just a matter of convention at this point, because we could equally absorb them
into the Fourier coefficients a(p) and a∗(p). Later we will find that d3p/(2Ep) defines
a Lorentz-invariant integral measure, so we keep it for convenience. Furthermore,
setting p0 = +Ep does not restrict us to positive-energy solutions because we would
get the same form with p0 = −Ep except for the interchange a(p) ↔ a∗(−p), which
we can always redefine (to see this, replace p → −p as integration variable). The
interpretation of the positive- and negative-frequency modes e∓ipx will become clear
only after quantizing the theory.

Complex scalar field. We can generalize the formalism to complex scalar fields:

Φ(x) =
1√
2

(Φ1(x) + iΦ2(x)) , Φ∗i (x) = Φi(x) , (1.17)

whose Lagrangian can be written as the superposition of the Lagrangians for its real
and imaginary parts:

L =

2∑
i=1

[
1

2
∂µΦi ∂

µΦi −
m2

2
Φ2
i

]
= ∂µΦ∗ ∂µΦ−m2 |Φ|2 . (1.18)

If we view the fields Φ(x) and Φ∗(x) as the independent degrees of freedom, the conju-
gate momenta become

Π(x) =
∂L

∂Φ̇(x)
= Φ̇∗(x) , Π∗(x) =

∂L
∂Φ̇∗(x)

= Φ̇(x) (1.19)

and the Hamiltonian is

H =

∫
d3x

(
Π∗Φ̇∗ + Π Φ̇− L

)
=

∫
d3x

(
|Π|2 + |∇Φ|2 +m2 |Φ|2

)
. (1.20)

Both fields satisfy Klein-Gordon equations: (2 + m2) Φ = (2 + m2) Φ∗ = 0, and the
Fourier expansion for their solutions has now the form

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
a(p) e−ipx + b(p)∗ eipx

) ∣∣∣
p0=Ep

, (1.21)

with two independent coefficients a(p) and b(p).

We can define a Lorentz-invariant scalar product for solutions of the Klein-Gordon equation:
(Ex)

〈Φ,Ψ〉 := i

∫
dσµ Φ∗(x)

↔
∂µψ(x) = i

∫
d3xΦ∗(x)

↔
∂0 ψ(x) , (1.22)
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where f
↔
∂µ g = f(∂µg)−(∂µf)g and σ is a spacelike hypersurface (which we chose to be a fixed timeslice

in the second step). The scalar product is Lorentz-invariant and therefore it has the same value on
each spacelike hypersurface:[∫

σ2

−
∫
σ1

]
dσµ Φ∗

↔
∂µΨ =

∫
d4x ∂µ (Φ∗

↔
∂µΨ) =

∫
d4x (Φ∗ 2Ψ− 2Φ∗Ψ) = 0 . (1.23)

In the first step we used Gauss’ law under the assumption that the fields vanish sufficiently fast at
|x| → ∞, and to obtain the zero we inserted the Klein-Gordon equations for the fields Φ and Ψ. Hence,
although the fields are time-dependent, the second form in Eq. (1.22) is independent of time. Eq. (1.22)
is linear in the second argument and antilinear in the first, it satisfies 〈Φ,Ψ〉∗ = 〈Ψ,Φ〉, but it is not
positive definite: to see this, consider the plane waves

fp(x) =
1

(2π)3/2
e−ipx

∣∣∣
p0=Ep

⇒
〈fp, fp′〉 = 2Ep δ

3(p− p′) ,
〈f∗p , f∗p′〉 = −2Ep δ

3(p− p′) ,
〈fp, f∗p′〉 = 0 .

(1.24)

With their help we can write the free Klein-Gordon solutions (1.21) as (ap = a(p))

Φ(x) =

∫
d3p

2Ep

(
ap fp(x) + b∗p f

∗
p (x)

)
, (1.25)

and therefore

〈Φ,Φ〉 =

∫
d3p

2Ep

∫
d3p′

2Ep′
〈apfp + b∗pf

∗
p , ap′fp′ + b∗p′f

∗
p′〉 =

∫
d3p

2Ep

(
|ap|2 − |bp|2

)
. (1.26)

The norm is not positive definite because of the negative-energy contributions |bp|2, hence it does not
permit a probability interpretation. Later we will see that 〈Φ|Φ〉 coincides with the U(1) charge for a
complex scalar field. For a real scalar field it is zero because bp = ap. From Eqs. (1.24–1.25) we can
extract the Fourier coefficients via

ap = 〈fp,Φ〉, b∗p = −〈f∗p ,Φ〉 . (1.27)

Noether theorem. Symmetries play a fundamental role in field theories. For ex-
ample, Poincaré invariance was the guiding principle for the construction of the La-
grangian (1.10), and eventually we will see that also the properties of ‘mass’ and ‘spin’
of a particle have their origin in the Poincaré group (they are related to the Casimir
operators of the group). There are also other types of symmetries such as internal
symmetries, and generally the invariance of the action under a symmetry leads to con-
served currents and charges. Symmetries also have dynamical implications: in fact,
the very nature of the Standard Model as a collection of gauge theories, where charged
particles interact via gauge bosons, is a consequence of gauge invariance.

Consider a field theory with fields Φi(x) and action S. We perform a transformation
of the coordinates and fields, which are parametrized by infinitesimal parameters εa:

x′µ = xµ + δxµ ,

Φ′i(x
′) = Φi(x) + δΦi ,

δxµ =
∑

a εaX
µ
a (x) ,

δΦi =
∑

a εa Fia(Φ, ∂Φ) .
(1.28)

The Noether theorem states that for each transformation that leaves the action
invariant (then we call it a symmetry transformation) there is a conserved Noether
current jµa (x) with

∂µ j
µ
a (x) = 0 (1.29)
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Figure 1.1: Visualization of Eqs. (1.33–1.34).

along the classical trajectories, i.e., for solutions of the classical equations of motion.
We note that one can still write down a Noether current jµa (x) irrespective of whether
the transformation (1.28) is a symmetry or not (then it won’t be conserved), and in
general we do not require the fields Φi(x) to satisfy the classical equations of motion.

Here are some examples for symmetry transformations:

• Internal symmetries correspond to transformations of the fields only, but not
spacetime itself. They are usually realized in the form of Lie groups whose ele-
ments are obtained by exponentiating the group generators Ga:

Φ′i(x) = Dij Φj(x) , D = e
i
∑
a
εaGa ⇔

δxµ = 0 ,

δΦi = i
∑
a
εa (Ga)ij Φj .

(1.30)

• Spacetime translations depend on four parameters aµ and they are part of the
Poincaré group:

x′ = x+ a

Φ′i(x+ a) = Φi(x)
⇔ δxµ = aµ

δΦi = 0 .
(1.31)

• Lorentz transformations consist of rotations and boosts and contain the re-
maining six parameters of the Poincaré group. An infinitesimal Lorentz transfor-
mation Λ = 1 + ε is parametrized by the antisymmetric matrix εµν :

x′ = Λx

Φ′i(Λx) = Dij(Λ) Φj(x)
⇔ δxµ = εµνxν

δΦi = . . .
(1.32)

The matrices D(Λ) are the finite-dimensional irreducible representations of the
Lorentz group which depend on the nature of the fields (scalar, Dirac, vector field
etc.); we will discuss them later in the context of Dirac theory. For scalar fields,
D(Λ) = 1 and therefore they satisfy Φ′i(Λx) = Φi(x) and δΦi = 0 (which is why
the fields are scalars under Lorentz transformations).
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To proceed, we need to define two types of variations. The ‘total’ variation is what
we already introduced above:

δΦi = Φ′i(x
′)− Φi(x) . (1.33)

It vanishes for the example of a scalar field under Poincaré transformations. The second
type of variation is the change of the functional form of the field at the position x:

δ0Φi = Φ′i(x)− Φi(x)

= Φ′i(x
′ − δx)− Φi(x) = Φ′i(x

′)− ∂µΦi δx
µ − Φi(x)

= δΦi − ∂µΦi δx
µ .

(1.34)

Both types of variations are visualized in Fig. 1.1: a scalar field is invariant under
translations and therefore Φ′(x′) = Φ(x); however, the functional form Φ′(x) at the
position x has changed in the process. It follows that

δΦi = δ0Φi + ∂µΦi δx
µ , (1.35)

where the second term vanishes for internal symmetries (δxµ = 0).

Consider now a variation of the action of the form

δS =

∫
d4x′ L

(
Φ′(x′), ∂′µΦ′(x′)

)
−
∫
d4xL

(
Φ(x), ∂µΦ(x)

)
=

∫
d4x δL+

∫
(δ d4x)L ,

(1.36)

with ∂′µ = ∂/∂x′µ, which does not vanish at the boundary and also permits a variation
of the volume itself. The variation of the integral measure follows from expanding the
Jacobian of the transformation:

d4x′ = |det J | d4x = (1 + ∂µδx
µ + . . . ) d4x ⇒ δ d4x = (∂µδx

µ) d4x . (1.37)

Inserting this together with Eq. (1.35) into the expression for δS, we get

δS =

∫
d4x [ δ0L+ ∂µL δxµ + L ∂µδxµ ]

=

∫
d4x

[
∂L
∂Φ

δ0Φ +
∂L

∂(∂µΦ)
δ0 ∂µΦ + ∂µ(L δxµ)

]

=

∫
V

d4x

{[
∂L
∂Φ
− ∂µ

∂L
∂(∂µΦ)︸ ︷︷ ︸

eqs. of motion

]
δ0Φ + ∂µ

[
L δxµ +

∂L
∂(∂µΦ)

δ0Φ︸ ︷︷ ︸
−δjµ = −

∑
a

εa j
µ
a

]}
.

(1.38)

In the second bracket we defined a current δjµ; it inherits the dependence on the
infinitesimal transformation parameters εa in Eq. (1.28), so there is one current jµa for
each parameter εa. Now, if these transformations define a symmetry of the action then
δS = 0, and because the spacetime volume is arbitrary also the integrand must be
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zero. The first bracket vanishes upon inserting the solutions of the classical equations
of motion, and so we arrive at a conserved Noether current for each εa:

∂µ j
µ
a (x) = 0 . (1.39)

We can rewrite the Noether current in a more useful form. With Eq. (1.35) we
eliminate δ0Φ in favor of the total variation δΦ:

− δjµ =
∂L

∂(∂µΦ)
δΦ−

[
∂L

∂(∂µΦ)
∂νΦ− gµνL︸ ︷︷ ︸

=: Tµν

]
δxν =

∂L
∂(∂µΦ)

δΦ− Tµνδxν . (1.40)

Tµν is the energy-momentum tensor whose meaning will become clear in a moment.
While we derived the Noether theorem and the current for a single-component field,
the derivation goes through for arbitrary types of fields in arbitrary representations of
the Lorentz group — one simply has to sum over all fields in the Lagrangian. Let’s
exemplify the case of a scalar field Φ(x) under . . .

• translations (δΦ = 0, δxν = aν): the first term in δjµ vanishes, and after remov-
ing the translation parameters aν we find that the conserved current according
to translation invariance is the energy-momentum tensor itself. The continuity
equation

∂µ T
µν = 0 (1.41)

holds for solutions of the Klein-Gordon equation and can be easily verified. The
energy-momentum tensor has the form Tµν = ∂µΦ ∂νΦ−gµν L, which corresponds
to one current for each component of aν .

• Lorentz transformations (δΦ = 0, δxα = εαβ x
β): here we can exploit the anti-

symmetry of εαβ and write

− δjµ = −Tµαεαβ xβ = −εαβ
2

(Tµαxβ − Tµβxα) =: −εαβ
2
mµ,αβ . (1.42)

Therefore, the conserved current is the angular momentum density

mµ,αβ = Tµαxβ − Tµβxα , ∂µm
µ,αβ = 0 . (1.43)

It carries the orbital angular momentum of the field; for fields with higher spin
there will be additional spin contributions coming from the δΦ term in Eq. (1.40).
We can make this more explicit by inserting the energy-momentum tensor:

mµ,αβ = −i ∂L
∂(∂µΦ)

[
−i (xα∂β − xβ∂α)

]
︸ ︷︷ ︸

=: Lαβ

Φ + (xαgµβ − xβgµα)L . (1.44)

Lαβ is a ‘covariantized’ version of the orbital angular momentum, because in
analogy to Eq. (2.55) we can define a three-vector

Li := −1
2 εijk L

jk = iεijk x
j∂k ⇒ L = x× (−i∇) . (1.45)

For a scalar field the current has the explicit form

mµ,αβ = −i ∂µΦLαβΦ + (xαgµβ − xβgµα)L . (1.46)
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• Internal symmetries (δxν = 0): in that case only the first term in Eq. (1.40)
contributes. An example is the U(1) current of a complex scalar field that we
will discuss in Eq. (2.44). The Lagrangian is invariant under the transformation
Φ′ = eiεΦ, Φ′∗ = e−iεΦ∗, with ε a real constant, and the corresponding current is

jµ = i(Φ∗ ∂µΦ− ∂µΦ∗Φ) = iΦ∗
↔
∂µΦ , ∂µ j

µ = 0 . (1.47)

Noether charges. There is another important consequence of current conservation.
After inserting the equations of motion into Eq. (1.38), we can exploit Gauss’ law to
convert the remaining volume integral into a surface integral:

0 =

∫
V

d4x ∂µ j
µ
a =

∫
∂V

dσµ j
µ
a . (1.48)

Specifically, if we squeeze the spacetime volume between two hypersurfaces at fixed
times, dσµ = (d3x,0), and assume that the fields vanish sufficiently fast for |x| → ∞,
we conclude that there is a conserved charge that has the same value for all times:∫

d3x j0
a

∣∣∣
t2
−
∫
d3x j0

a

∣∣∣
t1

= 0 ⇒ Qa :=

∫
d3x j0

a(x) = const ∀ t . (1.49)

The relative sign comes from the fact that the normal vectors for the planes at fixed
times always point outwards of the volume. In fact, this relation holds for arbitrary
spacelike hypersurfaces, so the charge Qa has the same value for all spacelike surfaces.

As an example, let’s consider again a scalar field under translations. The conserved
current is Tµν , and therefore the conserved charges are the spatial integrals

∫
d3xT 0ν .

They coincide with the Hamiltonian H and the total momentum P of the system,
which are conserved:

H =

∫
d3xT 00 =

∫
d3x (Π Φ̇− L) =

∫
d3xH ,

P i =

∫
d3xT 0i =

∫
d3xΠ ∂iΦ = −

∫
d3xΠ∇iΦ .

(1.50)

Taken together with the Lorentz transformations, the conserved charges are the quan-
tities

Pα =

∫
d3xT 0α , Mαβ =

∫
d3xm0,αβ . (1.51)

For example, in the case of rotations the conserved charge is

J i = −1
2 εijkM

jk = −1
2 εijk

∫
d3xm0,jk (1.45)

= i
2 εijk

∫
d3xΠLjk Φ , (1.52)

which is the total angular momentum of the field:

J = −i
∫
d3xΠLΦ . (1.53)
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Another example is the conserved charge for the U(1) current in Eq. (1.47):

Q = i

∫
d3xΦ∗

↔
∂0 Φ . (1.54)

This is just our earlier construction of the ‘norm’ for Klein-Gordon solutions; it is
indeed Lorentz-invariant because it has the same value on each spacelike hypersurface.

The Noether charges will play a prominent role in the quantum field theory. After
quantizing the fields by imposing commutator relations, the charges inherit the operator
structure of the fields and form a representation of the Lie algebra of the symmetry
group on the Fock space. That is, if the group elements of the symmetry transformation
in Eq. (1.28) can be written as

D = e
i
∑
a
εaGa

with [Ga, Gb] = ifabcGc , (1.55)

with some generic structure constants fabc, then the charges will satisfy the same Lie-
algebra relation as the generators:

[Qa, Qb] = ifabcQc , (1.56)

and thereby provide a representation of the symmetry group on the state space. This
is also true for the Poincaré group (which is also a Lie group): after quantization, the
operators Mµν and Pµ in Eq. (1.51) satisfy the commutator relations of the Poincaré
algebra and thereby form a unitary representation of the Poincaré group on the state
space.


