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11 Renormalization of QED

Renormalization constants. We have already discussed the underlying principles of
renormalization in the context of a scalar field. This saves us from the trouble of going
through the same steps all over again: we don’t need to calculate loop diagrams in
QED only to realize that they diverge and then figure out what to do about it, because
with a few adaptations we can take over the ideas from the scalar theory.

Once again, we interpret all quantities in the Lagrangian as bare und unphysical,

LQED
p.I.' ψB (i/∂ −mB)ψB + gB ψB /AB ψB

+
1

2
AµB (2 gµν − ∂µ∂ν)AνB +

λB

2
AµB ∂µ ∂νA

ν
B ,

(11.1)

and define their renormalized counterparts by

ψB = Z
1/2
ψ ψ , AB = Z

1/2
A A , mB = Zmm, gB = Zg g , λB = Zλ λ . (11.2)

In principle there are five renormalization constants, but we will later see that gauge
invariance relates two of them via Ward identities:

Zg Z
1/2
A = 1 , Zλ ZA = 1 . (11.3)

Hence, there are just three independent renormalization constants: Zψ, ZA and Zm.
The resulting Lagrangian takes the form8

LQED = Zψ ψ (i/∂ − Zmm)ψ + Zψ g ψ /Aψ

+ ZA
1

2
Aµ (2 gµν − ∂µ∂ν)Aν +

λ

2
Aµ ∂µ ∂νA

ν .
(11.4)

The price we have to pay is that the renormalization constants now also enter in the
Feynman rules:

p
S0(p) =

i

Zψ

/p+mB

p2 −m2
B + iε

,

q
Dµν

0 (q) = − i

q2 + iε

(
1

ZA
Tµνq +

1

λ
Lµνq

)
, (11.5)

q

+p −p
ig Γµ0 (p, q) = ig Zψγ

µ .

Note that we pulled out a factor ig in defining the vertex Γµ0 . Our momentum routing
for the vertex is such that the photon momentum is q = pf−pi and the average fermion

8If ZΓ = Zψ Zg Z
1/2
A denotes the prefactor that we would get in front of the coupling term ∼ ψ /Aψ,

then the first condition in Eq. (11.3) is equivalent to ZΓ = Zψ. To compare with the standard notation
in the literature, set ZΓ = Z1, Zψ = Z2 and ZA = Z3.
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momentum is p = (pf + pi)/2. Along the same lines as earlier (using the projectors
Tµνq = gµν − qµqν/q2 and Lµνq = qµqν/q2) we obtain the inverse tree-level propagators:

iS−1
0 (p) = Zψ (/p−mB) , i(D−1

0 )µν(q) = −q2 (ZA T
µν
q + λLµνq ) . (11.6)

In analogy to the scalar theory, we can get the full 1PI Green functions (the inverse
propagators and the fermion-photon vertex) by resumming its 1PI loop contributions.
Omitting momentum arguments, this means for the fermion propagator

S = S0 + S0 iΣS0 + S0 iΣS0 iΣS0 + . . .

= S0 [1 + iΣ (S0 + S0 iΣS0 + . . . )] = S0 (1 + iΣS)

⇒ S−1 = S−1
0 − iΣ or iS−1 = iS−1

0 + Σ .

(11.7)

Σ(p) is the fermion self-energy, the sum of all 1PI loop contributions to the propagator.
Applying the same steps to the photon propagator, we arrive at the perturbative series
for the inverse propagators and the vertex:

iS−1(p) = iS−1
0 (p) + Σ(p) ,

i(D−1)µν(q) = i(D−1
0 )µν(q) + Πµν(q) ,

Γµ(p, q) = Γµ0 (p, q) + Ωµ(p, q) .

(11.8)

The terms on the right-hand side define the fermion self-energy Σ(p), the photon
vacuum polarization Πµν(q), and the vertex correction Ωµ(p, q). To lowest order
in perturbation theory they are given by the following one-loop diagrams:

=

= +

+
-1

-1

-1

-1
= +

Tensor decomposition. Before we proceed, let’s pause for a moment and think about
the general tensor decomposition of these quantities. The self-energy depends on one
momentum p, so the only possible tensor structures compatible with Lorentz covariance
are /p and 1 (γ5 or γ5 /p would have the wrong sign under a parity transformation), and
the coefficients can only depend on the Lorentz-invariant p2:

Σ(p) =: ΣA(p2) /p− ΣM (p2) . (11.9)

An analogous decomposition holds for the inverse propagator itself:

iS−1(p) = A(p2) (/p−M(p2)) , (11.10)

which defines the fermion mass function M(p2), and 1/A(p2) is called the fermion
‘wave-function renormalization’. When substituting both equations into Eq. (11.8) we
find the perturbative expansion of these dressing functions:

A(p2) = Zψ + ΣA(p2) , A(p2)M(p2) = ZψZmm+ ΣM (p2) . (11.11)
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Likewise, the only two possible tensors for the photon vacuum polarization are gµν

and qµqν , so we can write

Πµν(q) = a(q2) gµν + b(q2) qµqν . (11.12)

The scalar functions a and b cannot have poles at q2 = 0 because that would correspond
to an intermediate massless particle; but since the vacuum polarization is already the
sum of all 1PI diagrams, intermediate propagators are excluded by definition. Now, the
Ward identity qµΠµν = 0 entails that the vacuum polarization must be transverse to
the photon momentum and therefore a = −b q2. The only remaining tensor structure
is then

Πµν(q) = Π(q2) (q2 gµν − qµqν) = q2 Π(q2)Tµνq (11.13)

which is proportional to the transverse projector, however with an additional factor
q2 in front.9 From the geometric resummation of the photon propagator analogous
to Eq. (11.7) it is immediately clear that all longitudinal parts will be annihilated by
Πµν(q), except for the leading tree-level term that contains the gauge parameter λ.
Therefore, the longitudinal part of the photon propagator does not pick up any loop
corrections beyond tree-level:

i(D−1)µν(q) = −q2

(
Tµνq
D(q2)

+ λLµνq

)
, D−1(q2) = ZA −Π(q2) . (11.14)

Because the longitudinal part does not get dressed, it contains no divergences and does
not need to be renormalized either. This is precisely the origin of the second constraint
in Eq. (11.3). As another consequence, the global factor q2 in front of the bracket
remains and, after inversion, becomes a factor 1/q2 in the photon propagator. Hence
the photon remains massless, even with interactions, due to gauge invariance!

After inverting the above formulas, the general expressions for the fully dressed
propagators and the dressed vertex become

S(p) =
i

A(p2)

/p+M(p2)

p2 −M2(p2) + iε
, (11.15)

Dµν(q) = − i

q2 + iε

(
D(q2)Tµνq +

1

λ
Lµνq

)
, (11.16)

ig Γµ(p, q) = ig
(
f1(p2, q2, p · q) γµ + . . .

)
. (11.17)

The fermion-photon vertex is more complicated because it depends on two momenta,
which leads to 12 possible tensors (we will return to this point later). In any case,
when we write the vertex correction as Ωµ(p, q) = V1(p2, q2, p · q) γµ + . . . , where the
dots refer to the remaining tensor structures, the general form of the vertex dressing
of γµ is:

f1(p2, q2, p · q) = Zψ + V1(p2, q2, p · q) . (11.18)

9Had we solved for b = −a/q2 instead, b would pick up a pole at q2 = 0 contrary to what we just
observed.
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Renormalization conditions. The next step is to impose the renormalization condi-
tions that are necessary to eliminate the three renormalization constants. We demand
that the fermion and photon propagators become free propagators at the respective
pole location, which entails

A(p2 = m2)
!

= 1 , M(p2 = m2)
!

= m, D(q2 = 0)
!

= 1 . (11.19)

This determines the renormalization constants via Eqs. (11.11) and (11.14):

Zψ = 1− ΣA(m2) , ZψmB = m− ΣM (m2) , ZA = 1 + Π(0) . (11.20)

The resulting dressing functions, which are now finite, become

A(p2) = 1 + ΣA(p2)− ΣA(m2) ,

A(p2)M(p2) = m+ ΣM (p2)− ΣM (m2) ,

D−1(q2) = 1−Π(q2) + Π(0) .

(11.21)

We could impose another condition on the vertex,

f1(m2, 0, 0)
!

= 1 ⇒ Zψ = 1− V1(m2, 0, 0) , (11.22)

but this is not necessary because it is already guaranteed by the Ward identity which
allowed us to relate Zg with ZA. We will later see that V1(m2, 0, 0) = ΣA(m2) is
automatically satisfied in the one-loop calculation. More generally, we will also see this
directly from the nonperturbative form of the vertex that follows from gauge invariance.

In summary we arrive at analogous conclusions as for the scalar theory: we can elimi-
nate the UV divergences from the theory by imposing three renormalization conditions.
We chose an onshell renormalization to make a direct connection with experiment, but
our choice of renormalization conditions is arbitrary. In turn, the renormalized mass
m and the renormalized charge g = e are no longer predictions of the theory but they
must be taken from experiment.

Fermion self-energy. As a concrete example, let us work out the one-loop contribu-
tion to the fermion self-energy in Fig. 11.1. It has the form

iΣ(p) =

∫
d4k

(2π)4
(igγµ)S0(k) (igγν)Dµν

0 (p− k) . (11.23)

We can ignore all renormalization constants that enter through the Feynman rules
in Eq. (11.5) because they do not contribute at one-loop; the same is true for the
mass renormalization so we can simply set mB = m. In Feynman gauge the photon
propagator is proportional to gµν and therefore the integral becomes

iΣ(p) = −g2

∫
d4k

(2π)4

γµ(/k +m)γµ[
k2 −m2 + iε]

[
(p− k)2 + iε

] . (11.24)

Here we can exploit the formula (8.13) that we derived in the scalar theory after
employing Feynman parameters and performing a Wick rotation:∫

ddk

(2π)d
1∏2

i=1

[
(k + pi)2 −m2

i + iε
] = i

1∫
0

dx I
(d)
2 , (11.25)
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Figure 11.1: One-loop contributions to the fermion self-energy, the vacuum polarization and
the vertex correction.

with I
(d)
2 defined in Eq. (8.20) and the remaining quantities in Eqs. (8.6–8.7). Since

we want to carry on with dimensional regularization we already wrote the formula in
d spacetime dimensions. In our present example we have p1 = −p and p2 = 0, m1 = 0
and m2 = m, and x1 = x, x2 = 1− x and therefore

∆ = (1− x)(m2 − xp2), kµ = lµ + xpµ . (11.26)

Thus, the self-energy becomes

iΣ(p) = −ig2

1∫
0

dx

∫
ddlE
(2π)d

γµ(/k +m)γµ
(l2E + ∆)2

∣∣∣
k→ l+xp

. (11.27)

We still have to work on the numerator. In d dimensions δµµ = d, and the Clifford
algebra {γµ, γν} = 2gµν entails γµγµ = δµµ = d. This leads to γµ/kγµ = (2 − d) /k and
finally

γµ(/k +m)γµ = (2− d) /k +md = (2− d)(/l + x/p) +md . (11.28)

Factors of lµ in the numerator are easily manageable because∫
ddlE
(2π)d

lµ

(l2E + ∆)2
= 0 ,∫

ddlE
(2π)d

lµlν

(l2E + ∆)2
= −1

d
gµν
∫

ddlE
(2π)d

l2E
(l2E + ∆)2

.

(11.29)

The first integral vanishes due to symmetry (replace l → −l in the integrand), and
so does the second for µ 6= ν. For µ = ν it must be proportional to gµν by Lorentz
invariance, and by contracting the indices one verifies that the prefactor on the r.h.s.
is correct. Hence, Eq. (11.28) becomes

γµ(/k +m)γµ = (2− d)x/p+md ⇒ iΣ(p) = −ig2

1∫
0

dx
[
(2− d)x/p+md

]
I

(d)
2 .

By comparing with Eq. (11.9) we read off the self-energy contributions:

ΣA(p2) = g2(d− 2)

∫
dxx I

(d)
2 , ΣM (p2) = g2md

∫
dx I

(d)
2 . (11.30)
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Setting now d = 4− ε, taking the limit ε→ 0, and inserting the result (8.29) for I
(d)
2

in dimensional regularization, we arrive at

ΣA(p2) =
α

2π

∫
dxx

[
2

ε
− γ + ln

4πM2

∆
− 1

]
,

ΣM (p2) =
αm

π

∫
dx

[
2

ε
− γ + ln

4πM2

∆
− 1

2

]
,

(11.31)

where we have also replaced the coupling by g2 = 4πα. This is the one-loop fermion self-
energy in dimensional regularization. We see that the method is completely analogous
to the scalar theory; from Eq. (11.30) we could have equally derived the result in Pauli-
Villars regularization. In both cases the expressions contain divergent and finite pieces:
in dimensional regularization the divergences are of the form ∼ 1/ε whereas with PV
regularization they are logarithmic.

To arrive at finite expressions, we apply the renormalization procedure outlined
above. That is, we subtract the self-energy at p2 = m2:

ΣA(p2)− ΣA(m2) =
α

2π

∫
dxx ln

∆m

∆
,

ΣM (p2)− ΣM (m2) =
αm

π

∫
dx ln

∆m

∆
,

∆m

∆
=
m2(1− x)

m2 − xp2
, (11.32)

which makes the dressing functions in Eq. (11.21) finite. Note that the logarithm
develops a branch cut for negative arguments. Since 0 < x < 1, the condition is

p2

m2
>

1

x
> 1 , (11.33)

and therefore the branch cut starts at p2 = m2. This is just what we anticipated with
the Källén-Lehmann representation, cf. Fig. 6.2. Due to the self-energy correction the
fermion can split into a fermion plus a photon (and, when going to higher orders in
perturbation theory, arbitrarily many photons), but since the photon is massless, the
multiparticle continuum that produces the cut starts at p2 = (m+mγ)2 = m2.

From Eq. (11.21) we extract the one-loop result for the mass function M(p2):

M(p2) =
m+ ΣM (p2)− ΣM (m2)

1 + ΣA(p2)− ΣA(m2)

≈ m+ ΣM (p2)− ΣM (m2)−m
(
ΣA(p2)− ΣA(m2)

)
= m

[
1 +

α

π

∫
dx
(

1− x

2

)
ln

∆m

∆

]
,

(11.34)

which inherits the branch cut for p2 > m2. It is also instructive to work out the explicit
form for large spacelike Q2 := −p2 � m2. In that case

ln
∆m

∆
≈ ln

m2(1− x)

xQ2
≈ − ln

Q2

m2
+ . . . (11.35)

and therefore the mass function falls off logarithmically with Q2 (see Fig. 11.2):

M(p2) = m

[
1− α

π
ln
Q2

m2

∫
dx
(

1− x

2

)
+ . . .

]
= m

[
1− 3α

4π
ln
Q2

m2
+ . . .

]
. (11.36)
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Vacuum polarization. We already discussed the general properties of the vacuum
polarization (transversality and analyticity at q2 = 0) above. The generally allowed
form for the vacuum polarization tensor is

Πµν(q) = Π(q2) (q2gµν − qµqν) + Π̃(q2) gµν , (11.37)

but the Ward identity qµΠµν = 0 enforces Π̃(q2) = 0. This is indeed true at each
order in perturbation theory provided that the regularization method respects gauge
invariance.

One can treat the one-loop expression in Fig. 11.1 in complete analogy to the fermion
self-energy example. The one-loop Feynman graph has the form

iΠµν(q) = −Tr

∫
d4k

(2π)4
(igγµ)S0(k+) (igγν)S0(k−)

= −g2 Tr

∫
d4k

(2π)4

γµ(/k+ +m)γν(/k− +m)[
k2

+ −m2 + iε
][
k2
− −m2 + iε

] . (11.38)

The calculation is a bit lengthier but still manageable; the result is
(Ex)

Π(q2) = −8g2

∫
dxx(1− x) I

(d)
2 ,

Π̃(q2) = −4g2

∫
dx
(
I

(d)
2 ∆ + (1− 2

d) Ĩ
(d)
2

) (11.39)

with ∆ = m2 − x(1 − x) q2. The integrals are given in Eq. (8.32), and with their
explicit form it is easy to check that Π̃(q2) vanishes indeed in dimensional regularization.
However, this is not true for a momentum cutoff: in that case Π̃(q2) is not only nonzero
but also develops a quadratic divergence (as one would infer from a dimensional analysis

of the diagram) due to the appearance of Ĩ
(d)
2 . Hence, a cutoff regulator breaks gauge

invariance, and therefore it is not the optimal choice when dealing with gauge theories
(unless one knows how to eliminate the contamination from such ‘gauge parts’).

The transverse piece, on the other hand, is only logarithmically divergent. In di-
mensional regularization it is given by

Π(q2) = −2α

π

∫
dxx(1− x)

(
2

ε
− γ + ln

4πM2

∆

)
. (11.40)

After performing the subtraction in Eq. (11.21) it becomes

Π(q2)−Π(0) = −2α

π

∫
dxx(1− x) ln

∆0

∆
,

∆0

∆
=

m2

m2 − x(1− x) q2
. (11.41)

Notice again the branch cut from the logarithm: since 0 < x(1− x) < 1
4 the condition

is now
q2

m2
>

1

x(1− x)
> 4 ⇒ q2 > 4m2 (11.42)

as it should be, because 2m is the threshold for e+e− pair creation.
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Figure 11.2: One-loop behavior of the fermion mass function and running coupling.

Running coupling. The vacuum polarization has another practical relevance. We
can define an effective running coupling as the product of the coupling constant α
and the photon dressing:

α(q2) := αD(q2) =
α

1−Π(q2) + Π(0)
. (11.43)

It is fully determined by the vacuum polarization, so for positive q2 > 4m2 it inherits the
branch cut from Eq. (11.41). To obtain the form for large spacelike Q2 := −q2 � m2

we plug in the one-loop result:

∆0

∆
≈ m2

x(1− x)Q2
⇒ Π(q2)−Π(0) =

2α

π

[
ln
Q2

m2

∫
dxx(1− x)︸ ︷︷ ︸

1/6

+ . . .
]
,

and we find that the running coupling rises logarithmically with Q2 as in Fig. 11.2:

α(q2) ≈ α

1− α
3π ln Q2

m2

. (11.44)

The reason behind the definition (11.43) is the following. Suppose we reformulate our renormalization
conditions (11.19) in terms of A(p2), M(p2) and α(q2):

A(p2 = m2)
!
= 1 , M(p2 = m2)

!
= m, α(q2 = 0)

!
= α , (11.45)

which makes the nature of m and α as an external input to QED explicit. With this we can calculate
the momentum dependence of M(p2) and α(q2), for example in one-loop perturbation theory as in
Fig. 11.2. However, these curves would look the same if we had not renormalized at p2 = m2 and
q2 = 0 but at some arbitrary scales p2 = µ2 and q2 = ν2, provided that we used M(µ2) and α(ν2)
as the new input values. Such a change cannot affect M(p2), α(q2) nor any other prediction of the
theory. On the other hand, this only holds as long as M(p2) and α(q2) do not additionally depend on
the renormalization point (that is, they must be renormalization-group invariant).

This is true for the fermion mass function, which we can easily confirm. From the relations (11.2)
between the bare and renormalized fields one immediately derives the relations between the bare and
renormalized n-point functions, for example

〈Ω|Tψ(x)B ψB(y) |Ω〉 = Zψ 〈Ω|Tψ(x)ψ(y) |Ω〉 (11.46)

and therefore SB(p) = Zψ S(p). When we impose the renormalization conditions at some renormaliza-
tion point p2 = µ2, Zψ will depend on the renormalization point and so will all the Green functions of
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the theory. For example, the renormalized propagator is S(p, µ) and its dressing functions A(p2) and
M(p2) have the form

AB(p2) =
1

Zψ(µ2)
A(p2, µ2) but MB(p2) = M(p2) . (11.47)

Due to our definition (11.10) the dependence on the renormalization constant Zψ is entirely carried
by the function A(p2), whereas M(p2) stays unrenormalized: MB(p2) = M(p2). The divergences must
therefore cancel in the mass function even if we had not renormalized the theory. Because there is no
Z factor that relates the bare with the renormalized mass function, M(p2) also cannot depend on µ
and its interpretation as a ‘running fermion mass’ is acceptable.

The analogous combination for the coupling α must be of the form(
g2f(q2)

)
B

= g2f(q2) . (11.48)

The relation Zg Z
1/2
A in Eq. (11.3) that follows from the Ward identity suggests to identify f(q2) with

the photon dressing function, because also(
g2D(q2)

)
B

= Z2
g ZA

(
g2D(q2)

)
= g2D(q2) (11.49)

stays unrenormalized, i.e., it is a renormalization-group invariant.

Since the values for m and α are an input to QED, the theory ‘knows’ how the
electron mass and its charge evolve with the momentum scale, and this scale dependence
is encoded in the functional form of M(p2) and α(q2). With e2 = 4πα we may interpret
α(q2) as the effective momentum dependence of the electron charge. Nonrelativistically,
the spacelike Q2 dependence translates into a potential between two electrons (or an
electron and a positron). If we pull two electrons infinitely far apart, we probe the
coupling at Q2 = 0; this is where we extract α(0) ≈ 1

137 experimentally. The rise of
α(q2) at Q2 > 0 can be viewed as a screening of the charge: at Q2 = 0, the electron
is screened by a cloud of virtual e+e− pairs, but at higher Q2 (smaller distances) we
eventually penetrate this charge cloud and see more of the electron’s ‘true’ charge which
is larger. Hence the name ‘vacuum polarization’, because the vacuum behaves like a
polarizable medium.

On the other hand, the rise of α(q2) happens extremely slowly and the coupling
remains the same over many orders of magnitude. Between Q2 = 0 . . . 30 GeV2, this
rise is only about 1% from the e+e− loop and ∼ 5% in total (including heavier leptons
and also quarks). This is good news because α(q2) is also the expansion parameter in
perturbation theory. The result in Fig. 11.2 was obtained at one-loop; if α(q2) would
rise dramatically with the momentum, we could forget about applying perturbation
theory at larger Q2. Fortunately the coupling is still small at large momenta, so the
perturbative treatment is justified.

Nevertheless, the fact that this rise continues indefinitely casts doubt on the behavior
of the theory at very small distances or very large energies; it is referred to as the
Landau pole of QED. The one-loop formula develops a pole at Q2 ∼ (10277 GeV)2,
which is completely irrelevant in practice because electromagnetism eventually merges
with the weak interactions and even the Planck scale 1019 GeV is much lower. Still, this
implies that QED by itself is not a well-defined theory at high energies. The situation
in QCD is reversed: α(Q2) falls off with higher momenta due to asymptotic freedom,
so the theory is well-defined in the ultraviolet.
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Fermion-photon vertex. Before discussing the perturbative one-loop result for the
vertex correction in Fig. 11.1, let’s have a look at the general properties of the fermion-
photon vertex. We use the same kinematics as earlier: q = p+ − p− is the incoming
photon momentum and p = (p+ + p−)/2 is the average momentum of the fermions.
The squared fermion momenta are given by

p2
± = p2 +

q2

4
± p · q ⇒ p2

+ − p2
− = 2 p · q , (11.50)

so the onshell limit p2
± = m2 corresponds to p · q = 0 and p2 = m2 − q2/4. The

dependence of the vertex on two independent momenta leads to 12 possible tensors:

{γµ, pµ, qµ} ×
{
1, /p, /q, [/p, /q]

}
. (11.51)

This looks rather hopeless, but fortunately gauge invariance provides us with some
ordering principle. We mentioned that local U(1) gauge invariance is equivalent to the
statement that the photons couple to fermions through the conserved vector current
of the global U(1) symmetry. A current that is classically conserved induces Ward-
Takahashi identities (WTIs) for the Green functions of the theory. These are
identities that relate an n−point function to (n− 1)−point functions. Without proof,
we state the WTI for the fermion-photon vertex:

qµ Γµ(p, q) = iS−1(p+ q
2)− iS−1(p− q

2) , (11.52)

which holds not only for qµ → 0 but in general, and it tells us that the vertex is partially
determined by the inverse fermion propagator.

The WTI has several practical consequences. First, we can work it out explicitly us-
ing the tensor decomposition (11.10) for the inverse fermion propagator. Abbreviating
B(p2) = A(p2)M(p2), as well as A(p2

±) = A± and B(p2
±) = B±, it takes the form

qµ Γµ(p, q) =

(
/p+

/q

2

)
A+ −

(
/p− /q

2

)
A− −B+ +B−

=
A+ +A−

2︸ ︷︷ ︸
=:A

/q +
A+ −A−

2 p · q︸ ︷︷ ︸
=: ∆A

2 p · q /p−
B+ −B−

2 p · q︸ ︷︷ ︸
=: ∆B

2 p · q

= qµ
[
Aγµ + 2pµ (∆A /p−∆B)︸ ︷︷ ︸

=: ΓµBC(p,q)

]
.

(11.53)

The quantities ∆A and ∆B are difference quotients because 2 p ·q = p2
+−p2

−, and in the
limit p2

+ = p2
− they become the derivatives of the dressing functions A(p2) and B(p2)

with respect to p2. The bracket in the last line defines the Ball-Chiu vertex which is
the part of the vertex that is constrained by gauge invariance. Consequently, the full
vertex can only differ by a purely transverse part that does not contribute to the WTI:

Γµ(p, q) = ΓµBC(p, q) + ΓµT(p, q) . (11.54)

The transverse part cannot have analytic poles at q2 = 0 because that would again
contradict its 1PI property. In combination with the transversality condition, one can
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show that this has the consequence that the transverse part must be at least linear in
qµ, so it vanishes for qµ → 0. It depends on eight remaining tensors, and in analogy to
the vacuum polarization one can construct appropriate tensor bases so that its dressing
functions are free of kinematic singularities and constraints at q2 = 0.

We are now ready to verify the first relation in Eq. (11.3). It follows from the fact
that the WTI holds for renormalized and unrenormalized quantities alike: if we define

ZΓ = Zψ Zg Z
1/2
A , then the argument that we used in Eq. (11.46) entails

ΓB =
1

ZΓ
Γ , S−1

B =
1

Zψ
S−1 . (11.55)

Therefore, the WTI for the bare vertex and propagator is identical to the renormalized
WTI in Eq. (11.52), except that an additional factor 1/ZΓ appears on the left-hand side

and 1/Zψ on the right. This, in turn, requires ZΓ = Zψ and consequently Zg Z
1/2
A = 1.

Since that identity eliminates the renormalization constant Zg we had no freedom
anymore to renormalize the vertex. Instead, we claimed that f(m2, 0, 0) = 1 will
be automatically ensured by the WTI. Now we can see how this comes about: we
renormalized the fermion propagator at p2 = m2 and the photon propagator at q2 = 0;
the corresponding onshell limit for the vertex is

Γµ(p, q)→ A(m2) γµ + 2pµ
(
A′(m2) /p−B′(m2)

)
. (11.56)

This is the exact form of the vertex in that limit because the transverse part does not
contribute. With our renormalization condition A(m2) = 1 the dressing function of the
the γµ component is indeed f(m2, 0, 0) = A(m2) = 1, as advertised.

Electromagnetic form factors. In onshell scattering matrix elements we addition-
ally need to attach Dirac spinors to the vertex, so we must work out the quantity
u(p+) Γµ(p, q)u(p−). In onshell kinematics p · q = 0 and p2 = m2 − q2/4, so q2 is the
only remaining Lorentz-invariant. In that case the WTI (11.52) reduces to the Ward
identity

qµ u(p+) Γµ(p, q)u(p−) = 0 . (11.57)

It follows immediately from taking (11.56) in the onshell limit p · q = 0 and exploiting
the Dirac equation for the onshell spinors:

u(p+) /p+
= mu(p+)

/p− u(p)− = mu(p−)
⇒ u(p+) /q u(p−) = u(p+) (/p+

− /p−)u(p−) = 0 . (11.58)

On the other hand, starting from the tensor structures in Eq. (11.51) we can write
down the most general onshell decomposition of the current. By judicious use of the
Dirac equations one can eliminate all slashed quantities, for example

u(p+) /p u(p−) = u(p+)
/p+

+ /p−
2

u(p−) = mu(p−) . (11.59)

This leaves three possible dressing functions which can only depend on q2:

u(p+) Γµ(p, q)u(p−) = u(p+)
[
a γµ + b pµ + c qµ

]
u(p−) . (11.60)
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The Ward identity then enforces c = 0, so we are left with γµ and pµ. Using the Dirac
equations it is easy to prove the Gordon identity

(Ex)

u(p+)

[
γµ − pµ

m
− iσµνqν

2m

]
u(p−) , (11.61)

with σµν = i
2 [γµ, γν ], which allows us to eliminate pµ in favor of σµνqν . The final result

for the onshell vertex is

u(p+) Γµ(p, q)u(p−) = u(p+)

[
F1(q2) γµ + F2(q2)

iσµνqν
2m

]
u(p−) . (11.62)

F1(q2) and F2(q2) are called the electromagnetic Dirac and Pauli form factors,
respectively, and F2(0) is the anomalous magnetic moment of the fermion.

Along the same lines we can also apply spinors to Eq. (11.56), which amounts to replacing /p→ m and
eliminating pµ using the Gordon identity. The form factors become

F1(q2) = A(m2)− C(m2) + q2 [. . . ], F2(q2) = C(m2) + [. . . ] , (11.63)

where C(m2) := −2m
(
mA′(m2)−B′(m2)

)
= 2mA(m2)M ′(m2) and the dots refer to further con-

tributions coming from the transverse part of the vertex. Observe that the renormalization condition
A(m2) = 1 does not lead to F1(0) = 1; we have to choose A(m2) = 1 + C(m2) instead. This is
equivalent to the following modification of the renormalization conditions in Eq. (11.19):

iS−1(/p)
∣∣∣
/p→m

!
= 0 ⇒ M(m2) = m,

d

d/p
iS−1(/p)

∣∣∣
/p→m

!
= 1 ⇒ A(m2) = 1 + C(m2) . (11.64)

Here we view the propagator as a function of /p, with /p
2 = p2, and thereby also take the derivative of

the dressing functions. This will also modify the renormalization constants in Eq. (11.20),

Zψ = 1 + C(m2)− ΣA(m2) , ZψmB =
(
1 + C(m2)

)
m− ΣM (m2) , (11.65)

as well as the result for the renormalized dressing functions:

A(p2) = 1 + C(m2) + ΣA(p2)− ΣA(m2) ,

A(p2)M(p2) =
(
1 + C(m2)

)
m+ ΣM (p2)− ΣM (m2) .

(11.66)

If we write F1(q2) = Zψ + δF1(q2), then the Ward identity gives the result δF1(0) = ΣA(m2)−C(m2).

Perturbative result for the vertex correction. The one-loop calculation for the
vertex correction in Fig. 11.1 is considerably more complicated than the self-energy
calculation but otherwise completely analogous. Starting from Eq. (11.8), the diagram
is given by

igΩµ(p, q) = u(p+)

∫
d4k

(2π)4
(ig γρ)S(k+) (ig γµ)S(k−) (ig γσ)Dρσ(k)u(p−)

= g3

∫
d4k

(2π)4

u(p+) γρ (/k+ +m) γµ (/k− +m) γρ u(p−)[
k2

+ −m2 + iε
][
k2
− −m2 + iε

]
[k2 + iε]

.

(11.67)

Inserting the formula (8.13) with p1 = p + q
2 , p2 = p − q

2 , p3 = 0, m1 = m2 = m and
m3 = 0 yields

Ωµ(p, q) = −2g2

∫
dx dy dz δ(x+ y + z − 1)︸ ︷︷ ︸

:= dω

∫
d4lE
(2π)4

N
(l2E + ∆)3

, (11.68)
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where N is the numerator with the replacement kµ → lµ−a pµ− b
2 q

µ and the function
in the denominator is given by

∆ = a2m2 + (b2 − a2)
q2

4
, a = x+ y = 1− z , b = x− y . (11.69)

The hardest part is working out the numerator. After some pages of calculation, the
vertex correction becomes

(Ex)

Ωµ(p, q) = 2g2

∫
dω u(p+)

[
H1 γ

µ +H2
iσµνqν

2m

]
u(p−) , (11.70)

where

H1 =
(d− 2)2

d
Ĩ

(d)
3 + 2

(
2m2 (a (1 + a)− 1)−∆ + (1− a) q2

)
I

(4)
3 ,

H2 = 4m2a (1− a) I
(4)
3 .

(11.71)

The divergent parts can only come from factors ∼ l2E in the numerator which lead to

the divergent integral Ĩ
(d)
3 . All other contributions are finite and proportional to I

(4)
3 ,

so we already took the limit d→ 4 for those. Note in particular that H2 is finite, i.e.,
the Pauli form factor is free of divergences.

Using dimensional regularization for Ĩ
(d)
3 , the form factors become

F1(q2) = Zψ +
α

2π

∫
dω

[
2

ε
− γ + ln

4πM2

∆
− 3 +

2m2 (a(1 + a)− 1) + (1− a) q2

∆

]
,

F2(q2) = m2 α

π

∫
dω

a(1− a)

∆
. (11.72)

At q2 = 0, we have ∆ = a2m2, and with a = 1− z from Eq. (11.69) we find

F2(0) =
α

π

∫
dω

z

1− z =
α

π

1∫
0

dz

1−z∫
0

dy
z

1− z =
α

π

1∫
0

dz z =
α

2π
. (11.73)

This is Schwinger’s famous result for the anomalous magnetic moment of the
electron at one-loop order. Inserting α ≈ 1

137 , the numerical value is about 1h:
F2(0) = 0.0011614, plus higher orders in perturbation theory. Compare this with the
experimental result: F2(0)exp = 0.0011597.

Another check is whether the Ward identity truly holds. From Eq. (11.72) we infer

F1(0) = Zψ +
α

2π

[
1

2

(
2

ε
− γ + ln

4πM2

m2
− 1

)
−
∫
da

(
2(1− a)

a
+ a ln a2

)]
. (11.74)

On the other hand, with C(m2) defined in Eq. (11.63), the fermion renormalization constant obtained
from Eq. (11.31) is

Zψ = 1 + C(m2)− ΣA(m2)

= 1 +
α

2π

[
−1

2

(
2

ε
− γ + ln

4πM2

m2
− 1

)
+

∫
da (1− a)

(
2(1 + a)

a
+ ln a2

)]
,

(11.75)

and so we have in total

F1(0) = 1 +
α

2π

∫
da
[
2(1− a) + (1− 2a) ln a2] = 1 . (11.76)


