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2 Quantization of the scalar field

Commutator relations. The strategy to quantize a classical field theory is to inter-
pret the fields Φ(x) and Π(x) = Φ̇(x) as operators which satisfy canonical commutation
relations. This is completely analogous to the transition from classical to quantum me-
chanics for discrete systems, where qi and pi are promoted to self-adjoint operators
that satisfy

[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0 . (2.1)

These relations hold in the Schrödinger picture where the time dependence is carried
by the states alone; in the Heisenberg picture the operators are time-dependent and
the commutation relations are imposed at equal times. In the following we will always
work in the Heisenberg picture, so we demand that for equal times[

Φ(x),Π(y)
]
x0=y0 = iδ(3)(x− y) ,[

Φ(x),Φ(y)
]
x0=y0 =

[
Π(x),Π(y)

]
x0=y0 = 0 .

(2.2)

Despite appearances, this does not destroy Lorentz covariance because x and y are
separated by a spacelike distance (x − y)2 < 0 which is preserved under a Lorentz
transformation. By virtue of the Dirac delta function, Φ(x) and Π(x) are now operator-
valued distributions; to arrive at well-defined expressions one should in principle ‘smear’
them with smooth test functions.

The wave functions in quantum mechanics are also fields Φ(x) that satisfy (relativistic or non-
relativistic) wave equations, but there they are interpreted as single-particle wave functions in some
Hilbert space by imposing an appropriate scalar product. (Unfortunately, already for relativistic Klein-
Gordon particles the scalar product is not positive definite, so we lost the probability interpretation).
In quantum field theory we impose instead an operator structure on Φ(x), which is why the procedure
is often called ‘second quantization’. Since we really only quantize the field Φ(x) once, the correct term
should be ‘field quantization’.

Fourier expansion. We write the Fourier expansion for solutions of the free Klein-
Gordon equation as

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
a(p) e−ipx + a†(p) eipx

) ∣∣∣
p0=Ep

, (2.3)

so the Fourier coefficients (from now on we abbreviate a(p) ≡ ap) will inherit the oper-
ator structure. In the following we will often encounter the Lorentz-invariant integral
measure

∫
d3p/(2Ep) that is obtained by restricting the four-momentum integration to

the positive-energy mass shell (which is a Lorentz-invariant condition):∫
d4pΘ(p0) δ(p2 −m2) =

∫
d4pΘ(p0)

δ(p0 − Ep) + δ(p0 + Ep)

2Ep
=

∫
d3p

2Ep
. (2.4)

Consequently, also the combination 2Ep δ
3(p−p′) is Lorentz-invariant. Upon inserting

the Fourier expansion into Eq. (2.2) we obtain the commutation relations for ap, a
†
p′ :

[ap, a
†
p′ ] = 2Ep δ

(3)(p− p′) , [ap, ap′ ] = [a†p, a
†
p′ ] = 0 . (2.5)
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This can be shown in several ways. For example, let’s write

Φ(x) =
1

(2π)3/2

∫
d3p

(
ap e

−iEpt + a†−pe
iEpt

2Ep

)
eip·x ,

Π(x) = φ̇(x) =
1

(2π)3/2

∫
d3p

(
ap e

−iEpt − a†−peiEpt

2i

)
eip·x ,

(2.6)

and abbreviate the two brackets (the three-dimensional Fourier transforms) by

Φ̃p(t) =
1

2Ep

(
ap(t) + a†−p(t)

)
, Π̃p(t) =

1

2i

(
ap(t)− a†−p(t)

)
. (2.7)

It follows that

Φ̃†p(t) = Φ̃−p(t) ,

Π̃†p(t) = Π̃−p(t) ,

ap(t) = Ep Φ̃p(t) + i Π̃p(t) ,

a†p(t) = Ep Φ̃†p(t)− i Π̃†p(t) .
(2.8)

Now insert this into the commutator:[
Φ(x), π(y)

]
x0=y0

=

∫
d3p d3p′

(2π)3
ei(p·x−p

′·y) [ Φ̃p(t), Π̃
†
p′(t)

] !
= iδ(3)(x− y) . (2.9)

Here we have changed the integration variable from p → −p and used Π̃−p(t) = Π̃†p(t). Hence, the
commutator for the Fourier transformed quantities must be also a δ−function (the time dependence
cancels), [

Φ̃p(t), Π̃
†
p′(t)

]
= iδ(3)(p− p′) , (2.10)

and we can extract the commutator relation for ap and a†p′ :

[ap, a
†
p′ ] = [ap(t), a

†
p′(t)] = −iEp

[
Φ̃p(t), Π̃

†
p′(t)

]
+ iEp

[
Φ̃′p(t), Π̃

†
p′(t)

]†
= 2Ep δ

(3)(p− p′) . (2.11)

Another way to arrive at this result is to use Eq. (1.27) for the Fourier coefficients and calculate the
commutator directly:

ap = 〈fp,Φ〉 = i

∫
d3x f∗p (x)

↔
∂0 Φ(x)

∣∣
x0=t

, a†p = −〈f†p ,Φ〉 = −i
∫
d3x fp(x)

↔
∂0 Φ(x)

∣∣
x0=t

. (2.12)

For equal times x0 = y0 = t we can insert the commutator relations (2.2), so that

[ap, a
†
p′ ] =

∫
d3x

∫
d3y f∗p (x) fp′(y)

↔
∂

∂x0

↔
∂

∂y0

[
Φ(x),Φ(y)

] ...
=

=

∫
d3x

∫
d3x

[
f∗p (x) ḟp′(y)− ḟ∗p (x) fp′(y)

]
iδ3(x− y)

= i

∫
d3x f∗p (x)

↔
∂0 fp′(x) = 〈fp, fp′〉 = 2Ep δ

3(p− q) .

(2.13)

Hamilton and momentum operator. To proceed, we derive the Fourier decomposi-
tion for the Hamiltonian (1.15) of the free scalar field theory. The form of the Hamilto-
nian already resembles that of a collection of harmonic oscillators at each point x, but
the term (∇Φ)2 couples the degrees of freedom at x and x+ δx. We can diagonalize
it in momentum space by inserting the relations (2.6–2.7); in that way it becomes the
sum of decoupled harmonic oscillators with frequencies Ep:

H =

∫
d3x

1

2

[
Π2 + (∇Φ)2 +m2Φ2

]
=

∫
d3p

1

2

[
Π̃†p(t) Π̃p(t) + E2

p Φ̃†p(t) Φ̃p(t)
]
. (2.14)

To arrive at this result, use∫
d3x (∇Φ)2 =

∫
d3x

∫
d3p d3p′

(2π)3
Φ̃p(t) Φ̃p′(t) (−p · p′) ei(p+p′)·x

=

∫
d3p Φ̃p(t) Φ̃−p(t)p

2 =

∫
d3p Φ̃†p(t) Φ̃p(t)p

2

(2.15)
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and similarly ∫
d3xΦ2 =

∫
d3p Φ̃†p(t) Φ̃p(t) ,

∫
d3xΠ2 =

∫
d3p Π̃†p(t) Π̃p(t) . (2.16)

Inserting the decomposition (2.7) finally yields the result

H =

∫
d3p

2Ep
Ep

a†p ap + ap a
†
p

2
. (2.17)

Unfortunately this expression is divergent because it contains the sum of the zero-point
energy of all oscillators:

a†p ap + ap a
†
p

2
= a†p ap +

1

2
[ap, a

†
p] = a†p ap + Ep δ

3(0) . (2.18)

The Dirac delta is proportional to the volume; had we studied the system in a finite
box, we would write (2π)3 δ3(0) → V . (This is an infrared divergence.) However,
for large p we have Ep ∼

√
p2 +m2 ' |p| and the integral still diverges. If we regulate

the divergence by integrating only up to a cutoff |p| ≤ Λ, the energy density of the
vacuum becomes

ρvac =
Evac

V
=

1

2

∫
d3p

(2π)3
Ep ∼

Λ∫
dp p3 ∼ Λ4 . (2.19)

This is a first example of an ultraviolet divergence which we will frequently encounter
later. Since (in a theory without gravity) we can only measure energy differences, we
can simply discard it so that the vacuum energy is zero. This is formally called normal
ordering or Wick ordering : we obtain the normal-ordered form :O : of some operator O
by moving all creation operators to the left of all destruction operators. Later when we
discuss renormalization we will see how UV divergences can be systematically removed
from the theory; for the time being we interpret all operators as being normal-ordered.
Hence, the Hamilton operator becomes

H =

∫
d3x

1

2
:
[
Π2 + (∇Φ)2 +m2Φ2

]
: =

∫
d3p

2Ep
Ep a

†
p ap . (2.20)

We can repeat the procedure to obtain the spatial momentum operator P . We
identify it with the classical charge P i =

∫
d3xT 0i in Eq. (1.50) that follows from the

invariance under spatial translations. The analogous calculation gives

P = −
∫
d3x :Π∇Φ:= i

∫
d3pp : Π̃p(t) Φ̃†p(t) : =

∫
d3p

2Ep
p a†p ap , (2.21)

so that we can combine Eqs. (2.20) and (2.21) into the covariant four-momentum
operator

Pµ =

∫
d3x :T 0µ : =

∫
d3p

2Ep
pµ a†p ap

∣∣∣
p0=Ep

. (2.22)
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Fock space. What is the Hilbert space on which the four-momentum operator acts?
Since Pµ is self-adjoint it has eigenstates with real eigenvalues. Let |k〉 be such an
eigenstate with Pµ |k〉 = kµ |k〉, so that k is the momentum of the state and k0 = Ek
its energy. First we observe that the energy (and therefore H itself) is non-negative:

〈λ|H|λ〉 =

∫
d3p

2Ep
Ep 〈λ| a†p ap |λ〉 ≥ 0 , (2.23)

because the integrand is ||ap |λ〉||2. On the other hand, we can calculate the commuta-
tors

[Pµ, a†q] = qµa†q , [Pµ, aq] = −qµaq (2.24)

and use them to show that if |k〉 is an eigenstate of Pµ, then also a†q |k〉 and aq |k〉 are
eigenstates of Pµ with their eigenvalues shifted by the momentum ±qµ:

Pµ
(
a†q |k〉

)
= a†q (Pµ + qµ) |k〉 = (k + q)µ a†q |k〉 ,

Pµ
(
aq |k〉

)
= aq (Pµ − qµ) |k〉 = (k − q)µ aq |k〉 ,

(2.25)

which at the same time shifts the energy of the state. Hence we can interpret a†q, aq as
ladder operators. Since the total energy cannot be smaller than zero, there must be a
state with aq |0〉 = 0 ∀ q, because otherwise the successive action of aq would lead to
negative eigenvalues of H.

We call |0〉 the vacuum of the theory. It has four-momentum zero: Pµ |0〉 = 0, and

we normalize it to 〈0|0〉 = 1. The state a†k |0〉 then has four-momentum kµ = (Ek,k):

Pµa†k |0〉 = kµa†k |0〉 . (2.26)

Since Ek =
√
k2 +m2 is the relativistic dispersion relation for a single particle with

mass m, we interpret |k〉 = a†k |0〉 as a one-particle state with energy Ek and momentum
k. Its normalization is

〈k|k′〉 = 〈0| ak a†k′ |0〉 = 〈0| a†k′ ak + 2Ek δ
3(k − k′) |0〉 = 2Ek δ

3(k − k′) (2.27)

which, in turn, leads to the Lorentz-invariant completeness relation on the one-particle
Hilbert space:

11-particle =

∫
d3k

2Ek
|k〉〈k| . (2.28)

Similarly, for a two-particle state we obtain

Pµa†q a
†
k |0〉 = (qµ + kµ) a†q a

†
k |0〉 (2.29)

and so on. A generic N−particle state has the form |k1 . . . kN 〉 = a†k1
. . . a†kN |0〉, and

the eigenvalue of the momentum operator is the total momentum of the system:

Pµ |k1 . . . kN 〉 = (kµ1 + · · ·+ kµN ) |k1 . . . kN 〉 . (2.30)

The resulting Fock space is the direct sum of all N−particle Hilbert spaces (N ∈ N0).
From the fact that the creation operators commute between themselves we also see that
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these multiparticle states are symmetric under the exchange of any two particles, so
they obey Bose–Einstein statistics. This is an example of the spin-statistics theorem,
which states that particles with integer spin are bosons and particles with half-integer
spin are fermions.

Generally, a multiparticle state that contains K different momenta ki, i = 1 . . .K, with n(ki)
particles carrying momentum ki and

∑K
i=1 n(ki) particles in total, can be written as

|n(k1)n(k2) . . . n(kK)〉 =

K∏
i=1

(
a†ki
)n(ki)√
n(ki)!

|0〉 , (2.31)

where the denominator takes care of multiplicities in the same momentum. We can count the total
number of particles in such a state with the number operator

N =

∫
d3p

2Ep
a†p ap . (2.32)

The eigenvalues of the operators N and Pµ are the total number of particles and the total four-
momentum, respectively:

N →
K∑
i=1

n(ki) , Pµ →
K∑
i=1

n(ki) k
µ
i . (2.33)

This can be easily proven for K = 1, i.e., for a state |n(k)〉 that consists of n(k) identical particles
with momentum k: simply commute ap in Eqs. (2.22) and (2.32) to the right until it annihilates on
the vacuum. The eigenvalue of N is n(k) and the total momentum is n(k) kµ, and therefore the total
energy n(k)Ek is the sum of the energies of all particles.

We can now also better understand the meaning of the field Φ(x). Written in Fourier
modes (2.3) and acting on the vacuum, it creates a particle at the position x:

Φ(x)|0〉 =
1

(2π)3/2

∫
d3p

2Ep
eipx|p〉

∣∣∣
p0=Ep

= |x〉 , (2.34)

and with the normalization (2.27) we can write the one-particle ‘wave function’ as the
overlap

〈x|p〉 = 〈0|Φ(x)|p〉 =
1

(2π)3/2
e−ipx

∣∣∣
p0=Ep

. (2.35)

In that way the fundamental entities in quantum field theory are not the particles but
rather the field Φ(x) which penetrates spacetime. Although it is not measurable by
itself, we can interpret it as the ‘property of spacetime’ to create particles of momentum
p and energy Ep as its excitations.

Complex scalar field and antiparticles. Let’s generalize the formalism to complex
scalar fields Φ(x) and Φ†(x), because this will allow us to describe not only particles
but also their antiparticles. The Lagrangian has the form

L = ∂µΦ† ∂µΦ−m2 Φ†Φ , (2.36)

the conjugate momenta become

Π(x) =
∂L

∂Φ̇(x)
= Φ̇†(x) , Π†(x) =

∂L
∂Φ̇†(x)

= Φ̇(x) (2.37)
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and the Hamiltonian is

H =

∫
d3x

(
Π†Φ̇† + Π Φ̇− L

)
=

∫
d3x

(
Π†Π +∇Φ†∇Φ +m2 Φ†Φ

)
. (2.38)

The commutator relations are[
Φ(x),Π(y)

]
x0=y0 =

[
Φ†(x),Π†(y)

]
x0=y0 = iδ3(x− y) (2.39)

whereas all other commutators vanish. The Fourier expansion has now the form

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
ap e

−ipx + b†p e
ipx
) ∣∣∣

p0=Ep
,

Φ†(x) =
1

(2π)3/2

∫
d3p

2Ep

(
bp e
−ipx + a†p e

ipx
) ∣∣∣

p0=Ep

(2.40)

with independent operators ap and bp whose commutation relations become

[ap, a
†
p′ ] = [bp, b

†
p′ ] = 2Ep δ

3(p− p′), (2.41)

with all others zero. The mode expansion of the four-momentum operator is

Pµ =

∫
d3p

2Ep
pµ
(
a†p ap + b†p bp

)
(2.42)

and implies that there are now two types of particles, with two types of momentum
eigenstates a†p |0〉 and b†p |0〉 which have the same momentum p, energy Ep =

√
p2 +m2

and mass m. Since they are scalar particles they also have both spin zero. So what
distinguishes them?

There is a new property that is particular to the Lagrangian for a complex scalar
field: is invariant under the continuous global U(1) symmetry

Φ′(x) = eiε Φ(x) , Φ′
†
(x) = e−iε Φ†(x) , (2.43)

with ε ∈ R constant. According to Noether’s theorem there is now a conserved current

jµ = i : (Φ† ∂µΦ− ∂µΦ†Φ): (2.44)

whose corresponding charge is

Q =

∫
d3x j0 = i

∫
d3x : (Φ†Φ̇− Φ̇†Φ): =

∫
d3p

2Ep

(
a†p ap − b†p bp

)
. (2.45)

Comparing this with Eq. (2.32), we see that the U(1) charge describes the total number

of particles created by a†p minus that created by b†p, which is conserved. For example,
its eigenvalues for one-particle states are

Qa†p |0〉 = a†p |0〉 , Q b†p |0〉 = −b†p |0〉 . (2.46)

We will call them particles and antiparticles; for the real field the particle is its own
antiparticle. Now we can also interpret the negative-energy solutions of the Klein-
Gordon equation: via Eq. (2.40) the coefficient of the positive-energy solution e−ipx
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becomes the annihilation operator of a particle and that of eipx the creation operator
of its antiparticle. In the context of QED we will later find that the U(1) Noether charge
indeed corresponds to the electric charge, i.e., the coupling to the electromagnetic field.

Poincaré algebra. In our discussion of the Poincaré group we saw that Poincaré
transformations have the form

x′ = T (Λ, a)x = Λx+ a ⇔ δxµ = εµνxν + aµ . (2.47)

The group axioms are satisfied: the transformation is associative, (T T ′)T ′′ = T (T ′ T ′′), the unit
element is T (1, 0), two consecutive Poincaré transformations form another one: T (Λ′, a′)T (Λ, a) =
T (Λ′Λ, a′+ Λ′a), and from equating this with T (1, 0) we can read off the inverse element: T−1(Λ, a) =
T (Λ−1,−Λ−1a).

Consider now the representations U(Λ, a) of the Poincaré group on some vector
space. They inherit the group structure from the T (Λ, a), and we use the symbol U
although they are not necessarily unitary. The Poincaré group ISO(3, 1)↑ is a Lie group
and therefore its elements can be written as

U(Λ, a) = e
i
2
εµνMµν

eiaµP
µ

= 1 + i
2 εµνM

µν + iaµP
µ + . . . , (2.48)

with infinitesimal generators Mµν for Lorentz transformations and Pµ for translations.
Their explicit form depends on the representation, i.e., it is determined by the vector
space on which they act. Since εµν is totally antisymmetric, Mµν can also be chosen
antisymmetric. It contains the six generators of the Lorentz group, whereas the mo-
mentum operator Pµ is the generator of spacetime translations. Mµν and Pµ form a
Lie algebra (the Poincaré algebra) whose commutator relations are given by

i
[
Mµν ,Mρσ

]
= gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ , (2.49)

i
[
Pµ,Mρσ

]
= gµρP σ − gµσP ρ, (2.50)

[Pµ, P ν ] = 0 . (2.51)

These relations can be derived from
(Ex)

U(Λ, a)U(Λ′, a′)U−1(Λ, a) = U(ΛΛ′Λ−1, a+ Λa′ − ΛΛ′Λ−1a) , (2.52)

which follows from the composition rules for the T (Λ, a): insert infinitesimal transformations (2.48) for
each U(Λ = 1 + ε, a), with U−1(Λ, a) = U(1 − ε,−a), keep only linear terms in all group parameters
ε, ε′, a and a′, and compare coefficients of the terms ∼ εε′, aε′, εa′ and aa′. A shortcut to arrive at
the Lorentz algebra relation (2.49) is to calculate the generator Mµν directly in the four-dimensional
representation, where U(Λ, 0) = Λ is the Lorentz transformation itself:

U(Λ, 0)αβ = δαβ + i
2
εµν (Mµν)αβ + · · · = Λαβ = δαβ + εαβ + . . . (2.53)

This is solved by the tensor
(Mµν)αβ = −i (gµα δνβ − gνα δµβ) (2.54)

which satisfies the commutator relation (2.49).

We can cast the Poincaré algebra relations in a less compact but more useful form.
The antisymmetric matrix εµν contains the six group parameters and the antisymmetric
matrix Mµν the six generators. If we define the generator of SO(3) rotations J (the
angular momentum) and the generator of boosts K via

M ij = −εijk Jk ⇔ J i = −1
2 εijkM

jk , M0i = Ki , (2.55)
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then the commutator relations take the form

[J i, J j ] = iεijk J
k,

[J i,Kj ] = iεijkK
k,

[Ki,Kj ] = −iεijk Jk,

[J i, P j ] = iεijk P
k,

[Ki, P j ] = iδij P0,

[Ki, P0] = iP i,

[P i, P j ] = 0,

[J i, P0] = 0,

[P i, P0] = 0 .

(2.56)

Here we see that boosts and rotations generally do not commute unless the boost and
rotation axes coincide. Moreover, P0 (which is the Hamilton operator in the quantum
field theory) commutes with rotations and spatial translations but not with boosts
and therefore the eigenvalues of K cannot be used for labeling physical states. If we
similarly define εij = −εijk φk and ε0i = si, we obtain

i
2 εµνM

µν = iφ · J + is ·K . (2.57)

J is hermitian but K is antihermitian for all finite-dimensional representations, which
prevents them from being unitary: there are no finite-dimensional unitary represen-
tations of the Lorentz and Poincaré groups. This is a consequence of the fact that
the Lorentz group is not compact: it contains the boosts whose parameter space is
isomorphic to R3. Later will discuss explicit examples for K when considering spinor
representations.

Representation on the Fock space. How is the Poincaré group represented on the
Fock space? It is not an accident that we chose the same symbol Pµ for the generator
of translations and for the classical Noether charge in Eq. (1.51), which meanwhile has
also become the momentum operator in the quantum field theory. It turns out that,
after quantizing the theory, the classical constants of motion Pµ and Mµν become
self-adjoint operators on the Fock space which define a unitary representation of the
Poincaré group.2 This means they satisfy the same Poincaré algebra relations as in
Eqs. (2.49–2.51), which happens to be a consequence of the commutation relations for
the fields, and the corresponding operator U(Λ, a) is unitary.

In Eqs. (1.31–1.32) we have seen how classical fields behave under Poincaré trans-
formations. The general transformation behavior of a collection of field operators Φi(x)
under Poincaré transformations is imposed as an axiom of quantum field theory:

U(Λ, a) Φi(x)U(Λ, a)−1 = D(Λ)−1
ij Φj(Λx+ a) . (2.58)

It ensures that matrix elements of field operators transform as

〈λ′1|Φi(x
′) |λ′2〉 = 〈λ1|U(Λ, a)−1 Φi(x

′)U(Λ, a) |λ2〉 !
= D(Λ)ij 〈λ1|Φj(x) |λ2〉 . (2.59)

This can be generalized to products of field operators at different spacetime points,
which gives the transformation behavior of correlation functions. We will discuss the
consequences of Eq. (2.58) in more detail later in the context of the Dirac field. For
the moment we restrict ourselves to a single scalar field where the equation reduces to

U(Λ, a) Φ(x)U(Λ, a)−1 = Φ(Λx+ a) . (2.60)

2Unitarity of U(Λ, a) has now become possible because the Fock space is infinite-dimensional.
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In particular, for translations U(1, a) = eiaµP
µ

it takes the form

eiaµP
µ

Φ(x) e−iaµP
µ

= Φ(x+ a) . (2.61)

Expanding both sides of the equation to O(a) we obtain

Φ(x) + iaµ [Pµ,Φ(x)] + · · · = Φ(x) + aµ∂
µΦ(x) + . . . (2.62)

from where we obtain the Heisenberg equations of motion:

∂µΦ(x) = i[Pµ,Φ(x)] . (2.63)

Since they follow from translation invariance they are quite general: they do not only
hold for scalar fields but also for polynomials in Φ, and more generally also for the
individual components of fields with higher spin because each component behaves like
a scalar field under translations. In particular, we can read off the Heisenberg equation
for the time evolution which is known from quantum mechanics:

∂Φ(x)

∂t
= i[H,Φ(x)] . (2.64)

From the Heisenberg equations for Φ(x) and Π(x) one can further recover the Klein-
Gordon equation for the field Φ(x).

The analogue of Eq. (2.61) derived from Lorentz invariance has the form

e
i
2 εµνM

µν

Φ(x) e−
i
2 εµνM

µν

= Φ(Λx) , (2.65)

with Λ = 1 + ε+ . . . . Expanding both sides to O(ε) and exploiting the antisymmetry
of εµν yields the equation

i(xµ∂ν − xν∂µ) Φ(x) = [Mµν ,Φ(x)] . (2.66)

Causality. The basic postulate of quantum field theory is that two measurements at
spacelike distances should not affect each other. This is guaranteed if any two local
observables O1(x) and O2(y) at spacelike separation commute, i.e.,

[O1(x),O2(y)]
!

= 0 if (x− y)2 < 0 . (2.67)

To this end, consider the commutator of two fields at arbitrary times:

∆(x− y) := [Φ(x),Φ(y)] . (2.68)

This quantity is known by various names: Pauli-Jordan function, Schwinger’s ∆ func-
tion, or simply causal propagator. If we insert the Fourier decomposition (2.3) for free
fields, use the commutator relation (2.5) and set z = x− y, we immediately get

∆(z) =
1

(2π)3

∫
d3p

2Ep
(e−ipz − eipz)

∣∣∣
p0=Ep

. (2.69)
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Now observe this: for z0 = 0, ∆(z) vanishes because in that case we can change the
integration variable from p→ −p and the difference cancels. On the other hand, ∆(z)
is Lorentz-invariant because both e±ipz and the integral measure d3p/(2Ep) are Lorentz-
invariant. A Lorentz-invariant quantity that vanishes for z0 = 0 must vanish for all
spacelike z with z2 < 0, because they can all be reached by a Lorentz transformation.
Hence, ∆(z) has only support inside the light cone (z2 ≥ 0).

In an interacting quantum field theory we cannot use a free mode expansion anymore
to calculate ∆(z). In that case we also have to postulate microcausality as an axiom:

[Φ(x),Φ(y)] = 0 if (x− y)2 < 0 . (2.70)

This also generalizes our earlier commutation relations (2.2) because they can be de-
rived from it: ∂0 ∆(z)

∣∣
z0=0

= −iδ3(z). Of course Φ(x) is not a measurable quantity but
actual observables like currents, charges etc. are functions of the fields and therefore
inherit its causal properties.

Propagators. Consider now the quantity

D(x− y) := 〈0|Φ(x) Φ(y) |0〉 . (2.71)

Since Φ(x) |0〉 = |x〉, this is the amplitude 〈x|y〉 for a particle that is emitted at y and
propagates to x. Its analogue in nonrelativistic quantum mechanics is the amplitude
〈x| e−iHt |y〉, which is nonzero even if x−y is spacelike (hence the problem with causality
in quantum mechanics).3 If we insert the Fourier decomposition (2.3) into D(x − y)
then, because we act on the vacuum on both sides, the only term that survives is
〈0| ap a†p′ |0〉 = 〈p|p′〉 = 2Ep δ

3(p− p′) and we arrive at

D(z) =
1

(2π)3

∫
d3p

2Ep
e−ipz

∣∣∣
p0=Ep

. (2.72)

This expression is again Lorentz-invariant but nonzero for z0 = 0, so it is generally also
nonzero for spacelike distances z2 < 0. How is this compatible with causality? The
crucial observation is that the commutator

[Φ(x),Φ(y)] = D(x− y)−D(y − x) (2.73)

describes two physical processes (propagation from y → x and x→ y) whose amplitudes
cancel each other for (x − y)2 < 0. This makes indeed sense because both processes
can occur: if x− y is spacelike, there is no Lorentz-invariant notion of whether x0− y0

is larger or smaller than zero.

We can understand this better if we consider a complex scalar field where the Fourier
decomposition of the field Φ(x) contains ap, b

†
p and Φ†(x) ∼ bp, a

†
p. In that case we

have to modify the axiom (2.70) so that it becomes

∆(x− y) = [Φ(x),Φ†(y)] = 0 if (x− y)2 < 0 , (2.74)

3We do not need to insert the time-evolution operator in D(x − y) because |x〉 already contains
information about the time variable x0.
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whereas [Φ(x),Φ(y)] = 0 ∀x, y. The result for ∆(z) in Eq. (2.69) remains the same,
but now we have

[Φ(x),Φ†(y)] = 〈0|Φ(x)Φ†(y) |0〉 − 〈0|Φ†(y)Φ(x) |0〉 . (2.75)

The first term corresponds to a particle that travels from y → x and the second term
to an antiparticle travelling from x → y, and both processes cancel each other in the
commutator. Therefore, it is really the multiparticle nature of quantum field theory
that saves causality: the particle and antiparticle propagation cancel each other. (For
a real scalar field Φ(x) = Φ†(x) the particle is its own antiparticle.)

Feynman propagator. Taking this idea further, we define the Feynman propagator

DF (x− y) := 〈0|TΦ(x)Φ†(y) |0〉 =

{
〈0|Φ(x)Φ†(y) |0〉 if x0 ≥ y0 ,

〈0|Φ†(y)Φ(x) |0〉 if y0 ≥ x0 ,
(2.76)

where the time-ordering T of some product of field operators implies that they should
be ordered with increasing times from right to left. The Feynman propagator will
become extremely important later because it is the fundamental quantity that appears
in the Feynman rules for S−matrix elements. It describes the propagation of a particle
forward in time, but simultaneously also the propagation of an antiparticle ‘backward
in time’; hence, these two processes are physically the same.

The various propagators that we encountered are also called Green’s functions
because they are the Green functions of the Klein-Gordon equation:

(2 +m2) iD(z) = δ4(z) . (2.77)

We can find the general solution to this equation by taking the Fourier transform of
both sides:

D(z) =
1

(2π)4

∫
d4p D̃(p) e−ipz , δ4(z) =

1

(2π)4

∫
d4p e−ipz , (2.78)

so that the propagator in momentum space becomes

D̃(p) =
i

p2 −m2
. (2.79)

It has a pole on the real axis of p2 = m2 or, equivalently, two poles at positive and
negative energies p0 = ±Ep = ±

√
p2 +m2. The strategy in order to return the

propagator to real space is to carry out the p0 integration first:

D(z) = i

∫
d3p

(2π)4
eip·z

∫
dp0

e−ip0z0

p2
0 − E2

p

. (2.80)

The integral can be calculated by extending the real-axis integration to a closed contour
in the complex p0 plane, which is allowed as long as the integrand vanishes at complex
infinity. For z0 > 0 this holds as long as we close the contour in the lower half plane,
whereas for z0 < 0 the integrand at infinity only vanishes if we close it in the upper
half plane. Any consistent prescription to avoid divergences in performing this contour
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Figure 2.1: Various integration contours in the complex p0 plane (top row) and support of
the resulting propagators in the Minkowski diagram (z0, |z|) (bottom row).

integral (there are 2 × 2 different ways of doing so) leads to a solution of the original
equation (2.77). By the residue theorem∮

dz f(z) = 2πi
∑
n

R(zn) , R(z0) = lim
z→z0

(z − z0)f(z) (2.81)

the result is (2πi) times the sum of the residues at p0 = ±Ep, which are given by

R+ =
e−iEpz0

2Ep
, R− = −e

iEpz0

2Ep
. (2.82)

To arrive at the Feynman propagator, we must integrate slightly below and above
the p0 axis for Re p0 < 0 and Re p0 > 0, respectively (see Fig. 2.1). For z0 > 0, we
close the contour in the lower half plane (because the integral at infinity vanishes only
below) and pick up the positive energy pole. For z0 < 0, we close the contour in the
upper half plane and pick up the negative energy pole, so the p0 integral becomes∫

dp0
e−ip0z0

p2
0 − E2

p

= 2πi [−Θ(z0)R+ + Θ(−z0)R−] , (2.83)

where the positive residue comes with a minus because of the opposite integration
direction. In total, the Feynman propagator ‘propagates positive energies forward in
time and negative energies backwards’:

DF (z) =

∫
d3p

(2π)4
eip·z i (2πi) [−Θ(z0)R+ + Θ(−z0)R−]

=

∫
d3p

2Ep

Θ(z0) e−ipz + Θ(−z0) eipz

(2π)3

∣∣∣
p0=Ep

(2.72)
= Θ(z0)D(z) + Θ(−z0)D(−z) ,

(2.84)
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and we see that this is indeed the definition of the Feynman propagator in Eq. (2.76).
Note that instead of deforming the integration path in p0 we could have equally shifted
the poles by ±Ep → ±E′p = ±(Ep − iε/(2Ep)), as indicated in Fig. 2.1:

1

p2
0 − E2

p

→ 1

p2
0 − E′p2 =

1

p2
0 − E2

p + iε
=

1

p2 −m2 + iε
, (2.85)

so we can equivalently write the Feynman propagator as

DF (z) =

∫
d4p

(2π)4
e−ipz

i

p2 −m2 + iε
. (2.86)

Later we will see that this ‘iε prescription’ follows from the imaginary-time boundary
conditions when projecting Green functions onto the interacting vacuum, which is why
it is really the Feynman propagator that appears in the interacting quantum field
theory (and not any of the other options in performing the contour integral).

Retarded and advanced propagators. For completeness we discuss two other
physically relevant integration paths. One is to integrate slightly above both poles and
the other is to integrate slightly below them (see Fig. 2.1). In the first case, for z0 > 0
we must close the contour in the lower half plane (which gives the sum of the residues)
and for z0 < 0 in the upper half plane (which gives zero); the situation is reversed in
the second case. The resulting propagators are the retarded and advanced propagators:

DR,A(z) = ∓
∫

d3p

(2π)4
eip·z i (2πi) Θ(±z0) (R+ +R−)

= ±Θ(±z0)

∫
d3p

2Ep

e−ipz − eipz
(2π)3

∣∣∣
p0=Ep

= ±Θ(±z0) (D(z)−D(−z)) = ±Θ(±z0) ∆(z) .

(2.87)

The retarded propagator has only support in the forward light cone and the advanced
propagator in the backward light cone. They also appear in classical field theory in the
context of constructing solutions to the inhomogeneous Klein-Gordon equation, where
they propagate the inhomogeneity forward (DR) and backward (DA) in time. The
classical version of causality states that DR and DA vanish if (x−y)2 < 0, which we also
proved here. By contrast, the Feynman propagator DF has no classical counterpart.
It does not vanish for spacelike distances but rather falls off exponentially outside the
light cone.


