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4.2 Spontaneous chiral symmetry breaking

In the quark model, the ‘constituent-quark masses’ enter as input parameters which
cannot be further explained. How do they come about in QCD? This ties into the
question of mass generation: if the light up and down quarks in the QCD Lagrangian
have masses of a few MeV, how is it possible that the masses of the proton and other
hadrons are of the order of 1 GeV? In fact, we could even set mu = md = 0 and
we would still get a proton mass not far from its physical value, so the overwhelming
contribution to its mass must be generated in QCD.

Earlier we have seen that regularization introduces a scale. Without a scale in the
theory, from a massless Lagrangian we would expect all hadrons to be massless as well,
so the anomalous breaking of scale invariance is a necessary component. The other
component is spontaneous chiral symmetry breaking (SχSB). We will see that
this mechanism plays a quite important role in the light hadron spectrum: it is not only
responsible for the Goldstone nature of the pions, but also the origin of the constituent-
quark masses which produce the typical hadronic scales of ∼1 GeV.

Spontaneous symmetry breaking. Let us go back to the beginning of Sec. (3.1) and
start with some general considerations. Suppose φi are a set of (potentially composite)
fields which transform nontrivially under some continuous global symmetry group G:

φ′i = Dij(ε)φj =
(
ei
∑
a εata

)
ij
φj = φi + δφi , δφi = i

∑

a

εa(ta)ij φj , (4.2.1)

where εa are the group parameters, the ta are the generators of the Lie algebra of G in
the representation to which the φi belong, and D(ε) are the representation matrices.
The quantum-field theoretical version of this relation is

ei
∑
a εaQa φi e

−i
∑
a εaQa = D−1

ij (ε)φj . (4.2.2)

where the charge operators Qa form a representation of the algebra on the state space.
Expanding the exponentials on both sides, we obtain for each εa:

[Qa, φi] = −(ta)ij φj . (4.2.3)

We have encountered examples of this relation earlier:

� Eq. (3.1.71) for the quark field operators under a vector transformation;

� Eq. (3.1.68) for the collection of composite fields {S(x), Sa(x), Pa(x)} under axial
transformations (that this is a manifestation of the same relation will become
clear in the discussion of the sigma model in Sec. 4.4.1).

If the symmetry group leaves the vacuum invariant, eiεaQa |0〉 = |0〉, then all gen-
erators Qa must annihilate the vacuum: Qa|0〉 = 0. Hence, when we take the vacuum
expectation value (VEV) of Eq. (4.2.2) we get

〈0 |φi| 0〉 = D−1
ij (ε) 〈0 |φj | 0〉 . (4.2.4)
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If the φi had been invariant under G to begin with, this relation would be trivially
satisfied. Because they transform nontrivially, D−1

ij (ε) is not the identity matrix for all
εa and so these vacuum expectation values must vanish:

Qa |0〉 = 0 ⇒ 〈0 |φi| 0〉 = 0 . (4.2.5)

This is the ’Wigner-Weyl’ realization of a symmetry, which simply means that the
symmetry is unbroken.

On the other hand, if an operator that is not invariant under G develops a nonzero
vacuum expectation value 〈0 |φi| 0〉 6= 0, then the symmetry G is spontaneously broken.
This is the ’Nambu-Goldstone realization’ of the symmetry, in which case we find

〈0| [Qa, φi] |0〉 = −(ta)ij 〈0|φj |0〉 6= 0 . (4.2.6)

Then we would conclude that the charges do not annihilate the vacuum: Qa|0〉 6= 0.
Since the symmetry is classically realized, they still commute with the Hamiltonian
and we have found another energy-degenerate vacuum:

Qa|0〉 = |η〉 6= 0, H|0〉 = 0 ⇒ H|η〉 = HQa|0〉 = QaH|0〉 = 0 . (4.2.7)

Unfortunately we have to be careful with these statements because in the case of spon-
taneous symmetry breaking the charges are not well defined. |η〉 is not a normalizable
state, which we can see from using the definition of the charge (3.1.5) together with
translation invariance:

〈η|η〉 = 〈0|Q2
a |0〉 =

∫
d3x

∫
d3y 〈0| j0

a(x) j0
a(y) |0〉 =∞ . (4.2.8)

Fortunately, commutators involving the charges are still well-defined, so when dis-
cussing spontaneous symmetry breaking we should start from Eq. (4.2.6). To prove
the Goldstone theorem, we insert the completeness relation (2.2.5) in that equation
and follow the same steps as when deriving the spectral representation:

〈0| [Qa(x0), φ(0)] |0〉 =

∫
d3x 〈0|

[
j0
a(x), φ(0)

]
|0〉

=
∑

λ

∫
d3p

2Ep

i

(2π)3

∫
d3x

(
Raλ(p) e−ipx +R?aλ(p) eipx

)

=
∑

λ

i

2mλ

(
Raλ(0) e−imλx0 +R?aλ(0) eimλx0

)

=
∑

λ

i

mλ
Re
{
Raλ(0) e−imλx0

} !
= const.

(4.2.9)

In going from the first to the second row we used translation invariance (2.2.11) to
factor out the phases e±ipx, and we defined

〈0| j0
a(0) |λ〉〈λ|φ(0) |0〉 = iRaλ(p) . (4.2.10)

The integral over d3x produces δ3(p), so that p0 = Ep = (p2 + m2
λ)1/2 becomes mλ.

By translation invariance, the VEV 〈0|φj(x)|0〉 = 〈0|φj(0)|0〉 on the right-hand side of
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Eq. (4.2.9) must also be independent of x0, whereas the left-hand side still contains x0

in the exponential. Thus, if the VEV is nonzero, the above requirement can only be
met if for each charge Qa there is a mode |λ〉 with

mλ = 0 and
Raλ(0)

mλ
6= 0 . (4.2.11)

Thus, for each generator that does not leave the vacuum invariant there is a massless
Goldstone boson, which has a non-zero vacuum overlap 〈0| j0

a(0) |λ〉 and 〈0|φ(0) |λ〉.
The other modes with mλ 6= 0 (excited states) must have Raλ(0) = 0.

SχSB in QCD and chiral condensate. How does spontaneous breaking of chiral
symmetry come about in QCD? The Goldstone theorem does not tell us why a non-
zero VEV appears, it only says that if there is a non-zero VEV, we must have massless
particles in the spectrum. Therefore, we must first identify potential candidates for
vacuum condensates that break chiral symmetry. From Eq. (4.2.10) we already see
that the ‘field’ φ(0) will have to be a composite operator, since only those produce
overlaps with hadronic states.

Let us go back to the quark propagator,

Sαβ(x− y) = 〈0|Tψα(x)ψβ(y)|0〉 , (4.2.12)

and contract it with either of the Dirac matrices Γ ∈ {γµ, γµγ5, 1, iγ5} and flavor
matrices {ta, 1}. This gives us the vacuum expectation values of either of the currents
in Eq. (3.1.23):

− Γβα ta Sαβ(0) = 〈0| jΓ
a (0) |0〉. (4.2.13)

Because of translation invariance, they cannot depend on x and must be (dimensionful)
constants. Due to Lorentz and parity invariance these must all be zero, with the only
possible exception of the scalar condensates which carry the quantum numbers of
the vacuum (0++):

〈0| S̃a(0) |0〉 = 〈0|ψ(0) ta ψ(0) |0〉 ,
〈0| S̃(0) |0〉 = 〈0|ψ(0)ψ(0) |0〉 =: 〈ψψ〉.

(4.2.14)

Here we put a tilde on the scalar densities S and Sa to avoid confusion with the
quark propagator. Actually, if SU(Nf ) were unbroken, all flavor non-singlet scalar
condensates would vanish as well. From Eq. (3.1.57) one can derive

[QVa , S̃b(x)] = ifabc S̃c(x) , (4.2.15)

and since unbroken SU(Nf )V implies QVa |0〉 = 0, the VEV of this relation vanishes.
The singlet condensate is then identical for all flavors:

〈0|S̃a(0)|0〉 = 0 ⇒ 〈ūu〉 − 〈d̄d〉 = 0, 〈ūu〉+ 〈d̄d〉 − 2〈s̄s〉 = 0, (4.2.16)

and therefore 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = 〈ψψ〉/3.
Finally, in the discussion below Eq. (3.1.47) we saw that a scalar bilinear of quarks

breaks chiral symmetry, i.e., it breaks SU(Nf )A × U(1)A. Thus we have a potential
candidate for a condensate that breaks chiral symmetry. In a chirally symmetric theory
of massless quarks, this quantity should vanish — but does it?
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Fig. 4.3: Quark DSE.

Quark mass function. Since the quark condensate is the trace of the quark propa-
gator, let us have a closer look at the propagator itself. For the following discussion
we temporarily switch to Euclidean conventions to avoid cumbersome factors of iε.
The transcription rules between Minkowski and Euclidean space can be found in Ap-
pendix C, but all we need to remember in the following is p2 = −p2

E and the quark
propagator in Euclidean conventions (we drop the subscript E):

S(p) =
1

A(p2)

−i/p+M(p2)

p2 +M(p2)2
. (4.2.17)

Recall the quark Dyson-Schwinger equation (DSE) in Fig. 4.3,

S−1(p) = A(p2)
(
i/p+M(p2)

)
= Z2(i/p+ Zmm) + Σ(p) , (4.2.18)

where M(p2) is the quark mass function and Σ(p) the self-energy incorporating the
quantum effects, which in one-loop perturbation theory reduces to Eq. (2.3.46). To
obtain the quark condensate for a particular flavor, we need to take the Dirac and
color trace of the quark propagator, which singles out the term with M(p2) and gives a
factor 4Nc. In addition, setting x− y = 0 corresponds to an integration over d4p/(2π)4

in momentum space, which from Eq. (C.32) entails
∫

d4p

(2π)4
f(p2) =

1

(4π)2

∫
dp2 p2 f(p2) . (4.2.19)

Thus we arrive at2

− 〈ūu〉 = Nc

∫
d4p

(2π)4
TrS(p) =

Nc

(2π)2

∫
dp2 p2

A(p2)

M(p2)

p2 +M(p2)2
. (4.2.20)

The functions M(p2) and A(p2) should be positive for spacelike momenta p2 ≥ 0. Since
for a chirally symmetric Lagrangian (m = 0) we expect the condensate to vanish, and
because the condensate is proportional to the integrated quark mass function, this
means that the quark mass function should be zero for all p2. The resulting quark
propagator is then chirally symmetric: {γ5, S(p)} = 0.

Indeed, this is what happens when we evaluate the self-energy order by order in
perturbation theory, see Fig. 4.4. In the massless theory, the tree-level propagator is
proportional to /p and the tree-level vertex is proportional to γµ, so they both contain
one γ matrix. However, every possible perturbative diagram has an odd number of
γ matrices whose Dirac trace vanishes. In this way, we can never generate a mass
function and M(p2) = 0 to all orders in perturbation theory!

2Strictly speaking we should also attach a factor Z2Zm, since the condensate renormalizes like the
mass term in the Lagrangian and the product m〈ψψ〉 is renormalization-point independent.
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Fig. 4.4: Perturbative expansion of the inverse quark propagator. In massless QCD, each
Feynman diagram contains an odd number of γ matrices whose trace vanishes.

On the other hand, we can generate a non-zero mass function nonperturbatively,
which can already be illustrated in simple DSE models. Apart from renormalization
constants, the exact expression for the self-energy is

Σ(p) = g2CF

∫
d4k

(2π)4
γµ S(q) Γν(q, p)Dµν(k) , (4.2.21)

which depends on the full gluon propagator and quark-gluon vertex. Let us assume
that the quark-gluon vertex remains at tree-level, so that only the internal quark and
gluon propagators are dressed (‘rainbow truncation’). In Feynman gauge the gluon is
diagonal in its Lorentz indices, so we can write the self-energy as

Σ(p) =

∫
d4k γµ S(p+ k) γµD(k) , (4.2.22)

where D(k) is proportional to the gluon propagator and absorbs all prefactors. Thus,
if we can find a good ansatz for D(k), we can solve the Dyson-Schwinger equation
S−1(p) = i/p+m+Σ(p) for the quark propagator. D(k) must be a scalar function of the
gluon momentum k2 with mass dimension −2. At large k2 it should be proportional to
QCD’s running coupling, D(k2) ∝ αs(k2)/k2, because this is where quarks and gluons
become asymptotically free. In the following we employ two rather crude models: one
where the gluon propagator is localized in momentum space and another one where it
is localized in coordinate space.

Munczek-Nemirovsky model. In this case the gluon propagator is just a δ-function
peaked at the origin, equipped with some mass scale Λ:

D(k) = Λ2 δ4(k) . (4.2.23)

Here the self-energy can be integrated analytically, so the model is UV-finite and instead
of imposing renormalization conditions we can set all renormalization constants to 1
(as we already did above). The result is

Σ(p) = Λ2 γµS(p)γµ = Λ2 γ
µ (−i/p+M) γµ

(p2 +M2)A
= 2Λ2 i/p+ 2M

(p2 +M2)A
, (4.2.24)

where we suppressed the momentum dependencies of A(p2) and M(p2) to avoid clutter.
Putting this back into the DSE leads to selfconsistent algebraic equations for the two
quark dressing functions:

A = 1 +
2Λ2

(p2 +M2)A
, AM = m+ 2M

2Λ2

(p2 +M2)A
. (4.2.25)
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Fig. 4.5: Quark propagator in the Munczek-Nemirovsky model (left) and NJL model (right).
The solid lines are the results in the chiral limit and the dashed lines exemplify the solutions
for m 6= 0.

In the chiral limit (m = 0), we see from the second equation that the trivial solution
M = 0 is always possible. It leads to a quadratic equation for A whose result is

M(p2) = 0 , A(p2) = 1
2

(
1 +

√
1 + 8 Λ2/p2

)
. (4.2.26)

It has the correct perturbative behavior for p2 →∞, namely M = 0 and A→ 1, so it
reverts the quark propagator back to its tree-level form and preserves chiral symmetry.
On the other hand, A(p2) diverges for p2 → 0, so this cannot be the whole story. Indeed
there is another solution with M 6= 0:

M(p2) =
√

Λ2 − p2 , A(p2) = 2 . (4.2.27)

It breaks chiral symmetry and is finite in the infrared. Both solutions are connected
at the point p2 = Λ2, see Fig. 4.5. This is the typical shape of an order parameter of a
spontaneously broken symmetry, like the magnetization in a ferromagnet when plotted
over temperature. If we switch on a quark mass m 6= 0, the curves become smooth (in
the ferromagnet this corresponds to a background magnetic field).

Despite the simplicity of the model, these results already capture the essence of more
realistic DSE calculations. At large momenta, M(p2) is the renormalized current-quark
mass in the Lagrangian. When lowering the momentum, the onset of the non-symmetric
phase sets in at some typical hadronic scale Λ, below which a mass is spontaneously
generated. The mass function in the infrared defines the quark mass at low momenta
that is relevant for hadrons, so it can be viewed as a ‘constituent-quark’ mass scale.
Thus, the quark mass function encodes the transition from a current quark at large
momenta to a constituent quark in the infrared, and this effect cannot be described in
QCD perturbation theory.

If we insert the combined solution in Eq. (4.2.20), the resulting quark condensate in
the chiral limit becomes

− 〈ūu〉 =
Nc

(2π)2

Λ2∫

0

dp2 p2

√
Λ2 − p2

2Λ2
=

2

15

Nc

(2π)2
Λ3 . (4.2.28)

With Λ = 1 GeV we even get a reasonable numerical value: −〈ūu〉 ∼ (220 MeV)3.
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NJL model/contact interaction. The shortcoming of the Munczek-Nemirovsky
model is that it does not have a critical coupling: a non-trivial solution for the quark
mass function and thus a chiral condensate exist for any Λ > 0. The gluon propagator in
Eq. (4.2.23) is localized in momentum space because of the δ−function. We could take
the extreme opposite and localize it in coordinate space, which results in an effective
four-fermi contact interaction between two quarks where the gluon shrinks to a point
and is integrated out. This is the NJL model (Nambu, Jona-Lasinio), where the
momentum dependence of the gluon is simply a constant:

D(k) =
1

(2π)2

c

Λ2
. (4.2.29)

In this case it is more convenient to integrate over the quark momentum q = p− k
instead of k in (4.2.22). However, now the self-energy integral must be regulated
because it is divergent. We could impose a sharp cutoff at q2 = Λ2, so that the gluon
propagator is a constant up to some scale Λ and vanishes above. As a consequence,
the integrand no longer depends on the external momentum p,

Σ(p) =
1

(2π)2

c

Λ2

∫
d4q γµ S(q) γµ =

1

(2π)2

c

Λ2

∫
d4q

2

A(q2)

i/q + 2M(q2)

q2 +M(q2)2
, (4.2.30)

which means that Σ(p) is constant and therefore A and M will be constants as well.
The integral over /q, which is the self-energy contribution to A, vanishes and we get
A = 1. The equation for M becomes:

M = m+ cM

1∫

0

dy
y

y + a
= m+ cM

[
1− a ln(1 + 1

a)
]

= m+ cM f(a) , (4.2.31)

where we set y = q2/Λ2 and a = M2/Λ2. The function f(a) satisfies f(a) ≤ 1 and
f(0) = 1. In the chiral limit we obtain the algebraic equation

M = cM f(a) , (4.2.32)

which returns again the trivial solution M = 0, but also a nontrivial solution where M
as a function of c is determined from the equation f(a) = 1/c. Because f(a) ≤ 1, this
solution only occurs above a critical value c ≥ 1.

The result is shown in Fig. 4.5: In contrast to the previous case, the dynamical
quark mass M is no longer a mass function that depends on the momentum but just
a constant; however, it depends on the coupling strength c and vanishes for c < 1.
Above that value, chiral symmetry is spontaneously broken. If we plug the result
into the chiral condensate (4.2.20) using the same cutoff, we obtain the same form as
in Eq. (4.2.28) except that the prefactor 2/15 is replaced by M(c)/(cΛ), which also
vanishes for c < 1.

In general, the gluon propagator is neither a δ−function nor a constant, and the
spontaneous breaking of chiral symmetry will not only generate a mass term for the
quark propagator but also chirally asymmetric terms for other correlation functions
with quark and antiquark legs such as the quark-gluon vertex. Nevertheless, both
models encode general features:
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Fig. 4.6: Axialvector WTI for the three-point functions (left) and current correlators (right).

� Implementing a scale Λ was necessary to make them work. If we replace Λ2 by
k2 in Eq. (4.2.23), the self-energy vanishes. In the NJL model, Λ is the regulator
which cannot be removed. The quark mass function and other dimensionful
quantities such as the chiral condensate, and eventually the masses of hadrons,
are then proportional to this scale, so that SχSB can be viewed as the mass
generation mechanism in the fermion sector of QCD.

� SχSB is a critical phenomenon: if the combined strength from the gluon propa-
gator and quark-gluon vertex (the ’effective’ running coupling) exceeds a critical
value, a quark mass is generated dynamically; otherwise we remain with the
chirally symmetric solution.

� In contrast to effective theories of QCD, where the terms that trigger SχSB al-
ready appear in the Lagrangian, the QCD Lagrangian tells us nothing about
whether chiral symmetry is preserved at the quantum level or not. Its sponta-
neous breaking is a purely dynamical effect induced by the strong gluonic inter-
actions, hence the name dynamical chiral symmetry breaking (DCSB).

Gell-Mann-Oakes-Renner relation. Now let us return to the Goldstone theorem.
We have explored the origin of SχSB and identified its order parameters: the scalar
quark condensate or, equivalently, the quark mass function. Hence, any other quantity
that depends on the mass function (and vanishes if the mass function does) will break
chiral symmetry as well. In Eq. (3.1.143) we found that, as a simple consequence of the
PCAC relation, either a pseudoscalar meson’s mass or its electroweak decay constant
must vanish in the chiral limit:

fλm
2
λ = 2mrλ

m=0−−−−→ 0 . (4.2.33)

Therefore, if we can show that the pion decay constant fπ is also proportional to the
mass function and comes about by SχSB, we must have massless pions.

The right place to look for such a relation is the axialvector WTI in (3.1.81), which
is pictorially shown in Fig. 4.6. On its l.h.s. we have the difference of the GA and GP
three-point functions; the r.h.s. is the sum of quark propagators multiplied with γ5. If
we multiply again with γ5 and take the trace, we get a difference of AP and PP current
correlators on the left and the quark condensate on the right. When inserting the
completeness relation, both terms contain pseudoscalar poles only, where the residues
depend on fλ and rλ as given in Eq. (3.1.144). Moreover, the hadronic poles must cancel
out between GA and GP because the quark propagator does not have such poles. In
this way we should be able to establish a relation between fπ and 〈ψψ〉.
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Let us start directly from the WTI (3.1.72) for the AP current correlator:

∂xµ〈0|TAµa(x)Pb(0)|0〉 − 2m 〈0|TPa(x)Pb(0)|0〉 = δ(x0) 〈0|
[
A0
a(x), Pb(0)

]
|0〉 . (4.2.34)

We already inserted the PCAC relation for the PP term. If we integrate over d4x on
the r.h.s., we obtain the vacuum expectation value of the commutator that we derived
earlier in Eq. (3.1.68),

〈0|
[
QAa , Pb(0)

]
|0〉 = −i〈0|

[
δab
Nf

S(0) + dabc Sc(0)

]
|0〉 = −i δab

Nf
〈ψψ〉 , (4.2.35)

where only the singlet condensate survives in the limit of exact SU(Nf )V . This is the
representative of the generic equation (4.2.6): since the condensate which is not in-
variant under axial symmetries is the scalar condensate and the respective charges are
the axial charges, the corresponding field ϕi must be the pseudoscalar density. For the
l.h.s. in Eq. (4.2.34), we insert the spectral decompositions of the AP and PP current
correlators from (3.1.144) and (3.1.145) and integrate over x. This means taking the
limit p→ 0:

lim
p→0

∑

λ

p2fλ − 2mrλ
p2 −m2

λ + iε
irλ δab =

∑

λ

irλfλ δab
!

= −i δab
Nf
〈ψψ〉 , (4.2.36)

where we used the relation fλm
2
λ = 2mrλ in the second equality. The poles cancel

indeed, and we arrive at the result that if chiral symmetry is realized and the quark
condensate vanishes, all combinations rλ fλ must vanish as well; if it is spontaneously
broken, there is at least one mode where both rλ and fλ are nonzero. Since fλ 6= 0 in
that case, we must have mλ → 0, i.e., a massless Goldstone boson.

Each |λ〉 corresponds to one of the generators, so there is a massless Goldstone boson
for each generator ta (for three flavors with SU(3)A×U(1)A this means a pseudoscalar
octet and a singlet). In turn, the decay constants fλ must vanish for the remaining
excited states with mλ 6= 0, so we can remove the sum in the equation above and write

rλ0 fλ0 = −〈ψψ〉
Nf

, (4.2.37)

where |λ0〉 is the ground state in each channel. If we substitute rλ0 by the condensate
and insert it in Eq. (4.2.33), we obtain the Gell-Mann-Oakes-Renner (GMOR)
relation,

f2
λ0
m2
λ0

= −2m
〈ψψ〉
Nf

, (4.2.38)

which is valid for each member of the lowest-lying pseudoscalar octet and singlet. (In
the singlet case it only holds if we ignore the anomaly.)

All in all, SχSB has important consequences for the light hadron spectrum: It
generates a large dynamical quark mass function, which translates to a large mass
contribution for hadrons made of quarks and antiquarks even in the chiral limit. The
pseudoscalar meson masses, on the other hand, behave like m2

PS ∝ mq and vanish for
mq → 0 as shown in Fig. 4.7.
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SU(Nf )V breaking. So far we have assumed that all
quark masses are equal, mu = md = ms. In the case
of SU(3)V breaking, we have to go back to the general
PCAC relation (3.1.38) and evaluate the anticommu-
tators, and also keep the dabc terms in Eq. (4.2.35). In
this case the form of the GMOR relation remains the
same for each generator with index a if we replace the
quark mass m by

a = 1, 2, 3 : 1
2 (mu +md) ,

a = 4, 5 : 1
2 (mu +ms) ,

a = 6, 7 : 1
2 (md +ms) ,

a = 8 : 1
6 (mu +md + 4ms) ,

a = 0 : 1
3 (mu +md +ms) ,

(4.2.39)

and the condensate accordingly:

〈ψψ〉
3
−→ 〈ūu+ d̄d〉

2
(a = 1, 2, 3),

〈ūu+ s̄s〉
2

(a = 4, 5), etc. (4.2.40)

Then we get for the pions and kaons:

f2
πm

2
π = −mu +md

2
〈ūu+ d̄d〉 , f2

K m
2
K = −mu +ms

2
〈ūu+ s̄s〉 . (4.2.41)

Inserting the experimental values3 fπ ≈ 92 MeV, mπ ≈ 140 MeV and assuming an
average quark mass mu = md = 3.5 MeV yields 〈ūu〉 = 〈d̄d〉 ≈ −(280 MeV)3. The same
estimate for kaons (fK ≈ 110 MeV, mK ≈ 494 MeV, ms ≈ 120 MeV) gives us 〈s̄s〉 ≈
−(290 MeV)3. The renormalized quark masses and condensates are renormalization-
point and -scheme dependent; the values quoted here are consistent with lattice QCD
results4 obtained in an MS scheme at µ = 2 GeV.

Strictly speaking, the GMOR relation as it stands is only valid in the chiral limit
because the quark condensate is only well-defined for m = 0. We can see this from its
definition (4.2.20) as the momentum integral of the quark mass function: In the chiral
limit, M(p2 →∞) vanishes like 1/p2, so the integral only diverges logarithmically and is
renormalized by Z2Zm. For m 6= 0, the one-loop result in Eq. (2.3.88)) entails that the
mass function vanishes logarithmically and therefore the integral diverges quadratically.
In this case, fλm

2
λ = 2mrλ can be viewed as a generalized GMOR relation since the

quantities fλ and rλ are well-defined for all quark masses. In principle, they can be
used to define the quark condensate from a pseudoscalar meson’s Bethe-Salpeter wave
function, namely as the chiral limit of the combination rλ0fλ0 via Eq. (4.2.37).

3The decay constants are sometimes defined with a factor
√

2, in which case fπ ≈ 130 MeV.
4McNeile et al., Phys. Rev. D87 (2013), 034503. arXiv:1211.6577.
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