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4.3 U(1)A anomaly

We have seen that spontaneous chiral symmetry breaking should affect all axial sym-
metries including the flavor-singlet U(1)A. The fact that there is no good candidate for
a flavor-singlet (pseudo-) Goldstone boson in the spectrum is related to the anomalous
U(1)A breaking. Anomalies are symmetries of classical Lagrangians that are broken
at the quantum level. They arise when regularization destroys a symmetry and there
is no regulator choice that can preserve it. Since the symmetry is lost, there is no
Goldstone boson because the quantum corrections generate a mass for that mode.

Anomalies are again a typical feature of axial symmetries. In contrast to sponta-
neous symmetry breaking, where the symmetry is lost due to dynamical effects, anoma-
lies have their origin in short-distance singularities of the currents Aµa = ψ γµγ5 ta ψ
and Aµ = ψ γµγ5 ψ. These are composite operators at the same space-time point which
are potentially divergent and have to be regularized. In principle, the problem would
also affect vector currents, but in that case it is possible to find appropriate regulariza-
tion prescriptions that leave their symmetry intact. Vector symmetries are related to
conserved charges (color charge, electromagnetic charge, flavor charges, etc.). If they
were broken at the quantum level, we would not only lose charge conservation but also
gauge symmetry, and the theory would become nonrenormalizable and inconsistent.
In this sense, global axial symmetries are ‘less important’ and the fact that they pro-
duce anomalies is not a serious problem for the theory. (Except when they are also
promoted to gauge symmetries: if a gauge symmetry is broken anomalously, then one
needs anomaly cancellations between different sectors of the theory.)

In the following we will see that

� QCD only leads to an anomalous U(1)A breaking, which has observable conse-
quences for the η and η′ masses, whereas

� QED also induces an anomalous SU(Nf )A breaking, which can be observed in
the π0 → γγ decay.

We already wrote down the basic relations that characterize the anomalous U(1)A
breaking in QCD. We have anticipated in Eq. (3.1.54) that the divergence of the axi-
alvector singlet current picks up an anomalous contribution

∂µA
µ = 2i ψM γ5 ψ +Nf Q(x) , (4.3.1)

where Q(x) is the topological charge density that we encountered in Section 2.1:

Q(x) =
g2

8π2
Tr {F̃µν Fµν }, F̃µν =

1

2
εµναβFαβ . (4.3.2)

The derived relation (3.2.42) entails that the mass of the η0 does not vanish in the
chiral limit, so there is no flavor-singlet Goldstone boson:

fη0m
2
η0

= 2
mu +md +ms

3
rη0 +

g2Nf

(4π)2
〈0| F̃µνa (0)F aµν(0) |η0〉 . (4.3.3)
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Anomalies from the path integral. To see how the anomalous term comes about,
suppose we start from an action S[ψ,ψ] that is invariant under global U(1)A transfor-
mations, e.g. the fermionic part of the Lagrangian for massless quarks:

L = ψ i/∂ ψ , ψ′ = eiεγ5ψ , ψ′ = ψ eiεγ5 . (4.3.4)

To derive WTIs for global flavor symmetries from the path integral, we need to employ
the background-field method discussed below Eq. (3.1.108): we add a source term
to the action with a background field Bµ, so that the total action that enters in the
partition function is locally invariant by construction:

Z[B] =

∫
D[ψ,ψ] ei(S[ψ,ψ]+S̃[ψ,ψ,B]) . (4.3.5)

This means we need to impose a U(1)A transformation behavior for the Bµ field with
a covariant derivative:

B′µ = Bµ +
1

g
∂µε , Dµ = ∂µ − igBµγ5 . (4.3.6)

The resulting Lagrangian

ψ i /Dψ = ψ (i/∂ + g /Bγ5)ψ = L+ gAµB
µ (4.3.7)

is locally invariant as desired. As before, Aµ is the U(1)A axialvector current and not
the gluon field (in the following we denote the gluon fields by Aµ to avoid confusion)
and the extra source term in the action is

S̃[ψ,ψ,B] = g

∫
d4xAµB

µ , Aµ = ψ γµγ5 ψ . (4.3.8)

Because all terms in the path integral are locally gauge invariant, a gauge transfor-
mation {ψ,ψ,B} → {ψ′, ψ′, B′} does not change the partition function: Z[B] = Z[B′].
If we then relabel the quark fields back to unprimed ones and work out the transfor-
mation of B only, we find

Z[B′] =

∫
D[ψ,ψ] ei(S[ψ,ψ]+S̃[ψ,ψ,B]+δS̃) = Z[B] 〈eiδS̃〉B (4.3.9)

and therefore 〈δS̃〉B = 0. Then, with

δS̃ =

∫
d4xAµ(x) ∂µε(x) = −

∫
d4x ε(x) ∂µA

µ(x) (4.3.10)

we arrive at the usual PCAC relation for the flavor-singlet case:

〈∂µAµ〉B = 0 . (4.3.11)

This means that current conservation holds inside the vacuum expectation value in the
presence of the background field. Note that without it the relation would be trivial:
〈∂µAµ〉 = ∂µ 〈Aµ〉 = 0 because 〈Aµ〉 = 0. If we had also included source terms η, η for
the quarks, we would have obtained the usual WTIs for the n-point functions like in
Eq. (3.1.111).
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But where is the anomalous term? As always we assumed that the path integral
measure remains invariant under the transformation. However, for axial transforma-
tions this is not necessarily the case. The origin of this behavior is the transformation
of the Dirac spinors

ψ′(x) = e+iεγ5ψ(x) , ψ′(x) = ψ(x) e+iεγ5 , (4.3.12)

which leads to a Jacobian determinant of the transformation:

D[ψ′, ψ′] = (detC)−2D[ψ,ψ] . (4.3.13)

It turns out that this determinant is ill-defined (0 · ∞) and requires regularization,
which in turn breaks the U(1)A symmetry. The final result is just the anomalous term:

(detC)−2 = exp

(
−i
∫
d4x ε(x)Nf Q(x)

)
. (4.3.14)

As a consequence, Z[B′] 6= Z[B] under a gauge transformation but instead

Z[B′] = Z[B]

〈
exp

(
−i
∫
d4x ε(x)Nf Q(x)

)〉

B

, (4.3.15)

and comparison with Eq. (4.3.9) gives the anomalous correction to the PCAC relation:

〈∂µAµ −NfQ〉B = 0 . (4.3.16)

Fujikawa’s method. In order to prove Eq. (4.3.14), let us expand the functional
determinant into eigenfunctions of the Dirac operator /D = /∂−ig /A. This is now again
the usual covariant derivative with the gluon field and not the quantity in Eq. (4.3.6),
which we no longer need. Assume that the Dirac operator /D is hermitian, so that it
has real eigenvalues λn and a set of orthonormal, complete eigenfunctions:

/Dϕn(x) = λn ϕn(x) ,

∫
d4xϕ†m,i(x)ϕn,j(x) = δmn δij ,
∑

n ϕn,i(x)ϕ†n,j(y) = δ4(x− y) δij ,
(4.3.17)

where i, j collect the Dirac, color and flavor indices. To ensure the (anti-) hermiticity
of the Dirac operator, we should really do this in Euclidean space, but let us ignore
this subtlety in what follows.

We can expand the spinors ψ, ψ into these eigenfunctions, where the coefficients
an and b̄n are independent Grassmann variables, and write down the path integral
measure:

ψ(x) =
∑

n

an ϕn(x) , ψ(x) =
∑

n

ϕ†n(x) b̄n , D[ψ,ψ] =
∏

n

dan
∏

m

db̄m . (4.3.18)

As a side remark, the fermionic path integral can be written as the determinant of the
Dirac operator (which is useful in lattice calculations):

det /D =

∫
D[ψ,ψ] ei

∫
d4xψ i /Dψ =

∫ ∏

n

dan db̄n e
−
∑
n b̄n λn an =

∏

n

λn . (4.3.19)
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Now, if we use the orthogonality relation to project out the coefficients, an axial
transformation changes an and b̄n to

a′n =

∫
d4xϕ†n(x)ψ′(x) =

∑

m

∫
d4xϕ†n(x) eiε(x)γ5 ϕm(x)

︸ ︷︷ ︸
=:Cnm

am (4.3.20)

so that we have
a′n =

∑

m

Cnm am , b̄′m =
∑

n

Cnm b̄n . (4.3.21)

Note that because we are dealing with axial transformations, both an and b̄m transform
with the same Cmn,

Cmn = δmn + i

∫
d4x ε(x)ϕ†n(x) γ5 ϕm(x) + . . . , (4.3.22)

and because the Grassmann measure transforms with the inverse determinant we arrive
at Eq. (4.3.13). Using detC = eTr lnC and expanding the logarithm, we obtain

(detC)−2 = exp

(
−2i

∫
d4x ε(x)

∑

n

ϕ†n(x) γ5 ϕn(x)

)
, (4.3.23)

which involves the ‘functional trace’ over γ5. With the completeness relation in (4.3.17),
the sum becomes
∑

n

ϕ†n(x) γ5 ϕn(x) = lim
y→x

∑

n

ϕ†n,i(y) (γ5)ij ϕn,j(x) = lim
y→x

Tr {γ5} δ4(x− y) , (4.3.24)

where the trace goes over Dirac, color and flavor indices. The color-flavor trace gives
a factor NfNc, whereas the Dirac trace vanishes but the δ-function diverges. Thus we
have a 0 · ∞ situation: this expression is possibly finite, but it is not well-defined and
must be regulated.

Fujikawa suggested to regulate it in a gauge-invariant way by damping the contri-
bution from the large eigenvalues by a Gaussian cutoff, with a regulator mass M that
is taken to infinity in the end:

lim
M→∞

∑

n

ϕ†n(x) γ5 e
−(λn/M)2

ϕn(x)

= lim
M→∞

∑

n

ϕ†n(x) γ5 e
−( /D/M)2

ϕn(x)

= lim
M→∞
y→x

Tr
{
γ5 e

−( /D/M)2
}
δ4(x− y)

= lim
M→∞

∫
d4k

(2π)4
e−ikx Tr

{
γ5 e

−( /D/M)2
}
eikx .

(4.3.25)

This regularization is gauge-invariant because the covariant derivative appears in it;
hence, it preserves the vector gauge symmetry. To proceed, we express /D2 by

/D2 = γµγνDµDν =
1

2
{γµ, γν}DµDν +

1

2
[γµ, γν ]DµDν

= D2 +
1

4
[γµ, γν ] [Dµ, Dν ] = D2 − ig

4
[γµ, γν ]Fµν

(4.3.26)
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and exploit the relation (2.2.47),

e−ikx f

(
∂

∂x

)
eikx = f

(
∂

∂x
+ ik

)
, (4.3.27)

where unsaturated derivatives vanish in the end. Eq. (4.3.25) then becomes

· · · = lim
M→∞

∫
d4k

(2π)4
Tr

{
γ5 exp

(
−(D + ik)2

M2
+

ig

4M2
[γµ, γν ]Fµν

)}
. (4.3.28)

When expanding the exponential, only terms with at least four γ matrices can survive
the trace with γ5, and only those ∝ 1/M4 which produce a dimensionless quantity after
integration will survive the limit M → ∞. These terms can only appear at quadratic
order and produce

i

4
Tr
{
γ5 γ

µγνγαγβ
}

= εµναβ . (4.3.29)

The resulting expression has the form

· · · = lim
M→∞

∫
d4k

(2π)4

[
e−

k2

M2
g2

M4
Nf Tr {F̃µν Fµν }+ . . .

]
. (4.3.30)

Then, after integrating out the momentum k and sending M → ∞, the final result
becomes

∑

n

ϕ†n(x) γ5 ϕn(x) = lim
y→x

Tr {γ5} δ4(x− y) =
g2Nf

16π2
Tr {F̃µν Fµν }, (4.3.31)

where only the color trace over the SU(3)C generators remains. Inserted in the deter-
minant (4.3.23), we arrive at Eq. (4.3.14).

A few remarks are in order:

� Note that we did not perform an ‘additional renormalization’ because the theory
was already renormalized before. Renormalization means that the regulator remains
in the theory, but it is hidden in the renormalization constants which must cancel each
other in observables, together with the regulator dependence. Here we have merely
cured a 0 · ∞ situation by introducing a cutoff M that we sent to infinity at the end.
However, the resulting finite expression has the property that it breaks the U(1)A
symmetry. While we used exponential damping, one can show that this result is indeed
independent of the chosen regularization as long as it is gauge invariant.

� Since the topological charge is essentially the trace over γ5, one can ask why only
U(1)A and not the non-Abelian global SU(Nf )A transformations lead to anomalies.
Repeating the analysis with ε→∑

a εa ta yields

∂µA
µ
a =

g2

(4π)2
εαβµν F bαβ F

c
µν TrF {ta}TrC {tb tc} , (4.3.32)

which vanishes in the flavor-octet case because Tr{ta} = 0. In other words, gluons
couple only to flavor-singlet currents, and the anomaly signals the breakdown of the
U(1)A symmetry in the presence of gluons.
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� The topological charge density can be written as the divergence of a current, the
Chern-Simons current:

Q(x) = ∂µK
µ , Kµ =

g2

8π2
εµναβ Tr

{
Fαβ Aν +

2ig

3
AαAβAν

}
. (4.3.33)

One could then conclude that the flavor-singlet PCAC relation (in the chiral limit) still
induces a conserved current ∂µ(Aµ−NfK

µ) = 0, which leads back to the argument that
there should be a flavor-singlet Goldstone boson. However, Kµ and its corresponding
charge

∫
d3xK0 are not gauge invariant, so they cannot couple to physical states and

hence there is no conserved axial charge.

Triangle diagrams. The axial anomaly will show up (and was originally derived) in
the calculation of correlation functions involving axialvector currents, e.g.

〈0|TAµ(x)V α(y)V β(z) |0〉 , 〈0|TAµ(x)Aα(y)Aβ(z) |0〉 , etc. (4.3.34)

Take for example the WTI for an AV V correlator:

∂xµ 〈AµV αV β〉 = 〈 (∂µAµ)V αV β〉+ δ(x0 − y0) 〈[A0, V α]V β〉
+ δ(x0 − z0) 〈V α [A0, V β]〉 = 0 .

(4.3.35)

The last two terms on the right-hand side are zero because the commutators of the
singlet currents vanish, as one can infer from Eq. (3.1.57). The first term produces
the pseudoscalar density via the PCAC relation. Repeating this for derivatives with
respect to y and z, we arrive at

∂xµ 〈AµV αV β〉 = 2m 〈PV αV β〉 , ∂yα 〈AµV αV β〉 = 0, ∂zβ 〈AµV αV β〉 = 0, (4.3.36)

without taking into account the anomaly.

The problem is that these diagrams are linearly divergent and therefore not transla-
tionally invariant. If one calculates them explicitly to 1-loop order, shifting integration
variables by a different momentum routing will produce results that differ by surface
terms. The freedom in distributing these surface terms can be used in the regularization
procedure when getting rid of all infinite pieces. It turns out that the relations (4.3.36)
cannot be satisfied simultaneously, and in order to preserve the vector symmetries the
axialvector WTI must pick up the additional anomalous term.

A theorem by Adler and Bardeen states that the full structure of the anomaly is
already contained in the perturbative one-loop fermion diagrams. Higher-loop correc-
tions do not renormalize the anomaly except for replacing the fields and coupling con-
stants by their renormalized values. For anomaly considerations it is therefore enough
to calculate the triangle and rectangle diagrams in Fig. 4.8. These are the superficially
divergent ones (in fact, pentagon diagrams should be included as well although they
are convergent), and they include an odd number of axial currents and thus an odd
number of γ5 matrices. For example, the anomalous contribution to the η0 mass in a
current correlator arises from quark-disconnected diagrams like the one on the right in
Fig. 4.8, which contains intermediate gluon exchanges in the flavor-singlet channel.
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Fig. 4.8: Anomalous 1-loop fermion diagrams.

QED anomaly and π0 → γγ decay. Anomalies have observable consequences. The
prime example are the η and η′ masses, but in this case the anomalous contribution
is also difficult to quantify due to the explicit breaking of chiral symmetry and mixing
effects. A much cleaner system is the decay of the π0 into two photons, which is almost
exclusively caused by the axial anomaly from QED effects.

So far we have considered the axial anomaly in QCD (the ‘gluon anomaly’) which
is the relevant one for the η − η′ problem. Quarks couple to gluons, and the quark’s
flavor-singlet axialvector current Aµ picks up an anomalous term containing the gluonic
field-strength tensor. On the other hand, quarks can also couple to photons, which will
also produce an anomaly although the related effects are much weaker (αQED � αQCD).
If we repeat the derivation for the QED Lagrangian, replace Fµν by the electromagnetic
field-strength tensor and the coupling g with e, we obtain the electromagnetic ‘photon
anomaly’ (Adler-Bell-Jackiw or ABJ anomaly):

∂µA
µ
a =

e2

(4π)2
εαβµν Fαβ Fµν TrF

{
taQ

2
}

TrC {1} , Q =
1

3




2 0 0
0 −1 0
0 0 −1


 , (4.3.37)

stated here without the fermion mass term and forNf = 3. The generator ta comes from
the axial transformation and the quark charge matrix Q from the covariant derivative
that enters quadratically in the regulator. Since fermions with different flavors have
different charges (expressed by Q), photons can also couple to flavor-nonsinglet currents.
Therefore, the electromagnetic anomaly produces additional terms for the divergences
of the axial currents Aµ and Aµa , i.e., for both U(1)A and SU(Nf )A.

For the π0 → γγ decay, consider the three-point function of an axialvector current
and two electromagnetic vector currents:

〈0|TAµa(x)V α
em(x1)V β

em(x2)|0〉 . (4.3.38)

The electromagnetic current is proportional to the quark charges and given by

V µ
em(x) = ψ(x) γµQψ(x) = V µ

3 (x) + 1√
3
V µ

8 (x) . (4.3.39)

To lowest order perturbation theory, Eq. (4.3.38) is the AV V triangle diagram in
Fig. 4.8 which diverges linearly. However, it also has a spectral representation in terms
of pseudoscalar poles, which we can derive in analogy to Eqs. (4.2.34–4.2.36). First,
we write down its WTI by acting with the derivative on the index µ:

∂xµ 〈0|TAµa(x)V α
em

(
z
2

)
V β

em

(
− z2
)
|0〉 − 2m 〈0|TPa(x)V α

em

(
z
2

)
V β

em

(
− z2
)
|0〉 = . . . (4.3.40)
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Fig. 4.9: π0 → γγ decay in the chiral limit.

We are interested in the π0 with a = 3; in that case the commutators on the right-
hand side obtained from (3.1.74) vanish, because they contain the structure constants
f338 = 0, etc. Instead we have the contribution from the anomaly:

· · · = e2D

(4π)2
εµνρσ 〈0|TFµν(x)Fρσ(x)V α

em

(
z
2

)
V β

em

(
− z2
)
|0〉 , (4.3.41)

where the factor D = Nc/6 comes from the flavor and color traces.
If we work out the time orderings on the left-hand side and insert the completeness

relation, we can again isolate the Feynman propagator. The pole residues are the two
decay constants from Eq. (3.1.142) and the π0 → γγ decay amplitude, defined via

Γαβλ (z, p) = i〈λ|TV α
em

(
z
2

)
V β

em

(
− z2
)
|0〉 =

∫
d4q

(2π)4
e−iqz Γλ(q, p) εαβρσqρ pσ . (4.3.42)

Its structure in momentum space is due to Lorentz and parity invariance: p is the
pion momentum, q the relative momentum between the photons, and the only possible
Lorentz tensor is εαβρσqρ pσ. Integrating (4.3.40) over x and z, the poles drop out again
and the analogue of Eq. (4.2.36) becomes

lim
p→0
q→0

∑

λ

fλ Γαβλ (q, p) = lim
p→0
q→0

fπ Γαβπ (q, p) = 0 , (4.3.43)

as long as we discard the anomaly on the right-hand side. We have again removed the
sum over λ because the decay constants are zero for all excited states with mλ 6= 0.
Since the transition matrix elements are defined at p2 = m2

π = 0, this is a chiral-
limit relation. Hence, the decay amplitude should be zero, which is known as the
Sutherland-Veltman theorem.

In order to take the anomaly into account, we would have to work out the right-
hand side of Eq. (4.3.41). However, since the anomaly is already produced in the
lowest order perturbation theory, it is sufficient to start again from Eq. (4.3.40) and
work out its perturbative 1-loop contributions, the AV V and PV V triangle diagrams.
The ambiguity in shifting integration variables produces just the anomalous term. The
result has the same structure in momentum space ∼ εαβρσqρ pσ, and the resulting decay
amplitude becomes Γπ(0, 0) = e2D/(2π2fπ). The calculated π → γγ decay width using
this result is 7.862 eV; the experimental value is 7.8±0.9 eV. Therefore, the neutral pion
decay does not probe the nonperturbative structure of QCD at all — it is completely
determined by the axial anomaly.


