
4.5 Hadron matrix elements 163

𝑁 𝑁

𝑒⁻𝑒⁻

𝑒⁻

𝑒⁺ 𝜈, 𝑒, 𝜇

𝑁

V V V, A P S

𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁

𝑁 𝑁𝜈

Fig. 4.15: Experimental processes involving the nucleon and different types of currents.

4.5 Hadron matrix elements

4.5.1 Scattering amplitudes

Since quarks and gluons are confined in hadrons, we cannot probe them directly in
experiments. Instead, we can learn about their dynamics by probing hadrons with
external currents, e.g. when scattering leptons off hadrons, or by scattering hadrons
on other hadrons. Among the basic observables extracted from such reactions are the
form factors of hadrons, which encode their momentum-dependent interactions with
photons, W and Z bosons. Some of the relevant processes involving the nucleon are
shown in Fig. 4.15:

� e−N scattering has been essential for learning about the substructure of the
proton. Due to the smallness of the electromagnetic coupling constant αQED ≈ 1/137,
the process is dominated by one-photon exchange. The pioneering experiments by
Robert Hofstadter revealed that the proton and neutron are not pointlike; instead, their
electromagnetic form factors provide information on their substructure in terms of
electric charge and magnetization distributions (Nobel prize 1961). Even today, the nu-
cleon’s electromagnetic form factors are not fully understood, as evidenced by the pro-
ton radius puzzle and other open questions. The emission/absorption of virtual photons
can also turn a nucleon into a resonance, and electromagnetic transition form factors
provide insight on the internal structure of nucleon resonances (N∗). Moreover, crossing
symmetry implies that the same form factors describing the interaction with a virtual
photon also enter in crossed processes such as e+e− ↔ NN̄ or N (∗) → Ne+e−. The
latter is an important tool to probe the initial stages of heavy-ion collisions when form-
ing a quark-gluon plasma, since dileptons (e+e− or µ+µ− pairs) escape the interaction
zone mostly unharmed.

� The axial form factors of the nucleon can be probed by the weak interaction
usingW and Z bosons. Examples are neutrino scattering off the nucleon, or the neutron
beta decay which is the process n → pe−ν̄e. The nucleon’s axial charge gA is a basic
ingredient in many low-energy relations.

� The pseudoscalar form factor of the nucleon is proportional to the Nπ coupling,
which enters in the NN interaction through pion exchange.

� The nucleon’s scalar form factor is not directly measurable but related to the
derivative dM/dmq of the nucleon mass with respect to the current-quark mass (the
so-called nucleon sigma term) by the Feynman-Hellmann theorem. In addition,
the Higgs boson could couple to the nucleon through a top-quark loop.
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Fig. 4.16: Experimental processes involving nucleons, pions and photons.

On the one hand, measuring form factors gives us experimental information on
the internal quark-gluon structure of the probed hadrons and their resonances. On the
other hand, these basic quantities appear as building blocks in other scattering processes
(Fig. 4.16), which are experimentally accessible but theoretically more complicated:

� Nπ scattering has been the traditional tool for extracting nucleon resonances.
The scattering amplitude has resonance poles, Nπ → N∗ → Nπ, whose residues are
the NN∗π coupling strengths. Historically, the nucleon resonances have been named
after the incoming partial wave L2I,2J in Nπ scattering, with L = S, P , D, F , . . . :
the Roper resonance is P11, the N(1535) is S11, etc. Because many of the higher-
lying excitations predicted by the quark model have not been seen in Nπ scattering, a
common assumption has been that they may not couple strongly to Nπ.

� Meson electroproduction is the process Nγ∗ → NM , where the virtual photon
is produced by the electron and M is the meson. In photoproduction the photon is
real. These reactions also create nucleon resonances but involve their electromagnetic
transition form factors. Thus, if some resonance couples weakly to Nπ but has a
large electromagnetic coupling, it should be easier to detect in this way. Combined
with improved partial-wave analyses, photo- and electroproduction experiments have
indeed found new baryon resonances in recent years. A typical question here concerns
the separation of the resonance contributions (like Nγ∗ → N∗ → NM) from the
quantum-field theoretical ‘background’.

� Compton scattering is the process where two photons couple to the nucleon,
each of which can be real or virtual. It encodes the nucleon’s polarizabilities, which
describe the nucleon’s response to an external electromagnetic field, but also structure
functions and generalized parton distributions (GPDs).

� In deep inelastic scattering (DIS) the nucleon is broken up by the highly
virtual photon and one measures the inclusive cross section eN → eX. DIS encodes
the nucleon’s structure functions, which give us access to the partonic structure of the
nucleon and its parton distribution functions (PDFs). The early DIS measurements in
the 1960s/70s have provided first convincing evidence for the existence of quarks.

� Finally, NN scattering is the elementary reaction in nucleus-nucleus and heavy-
ion collisions which are performed e.g. at the LHC and RHIC. The NN interaction is
also the basic ingredient in nuclear physics, and in contrast to its long-range part which
is mediated by pion exchange, the short-range nuclear force is still not well understood.

Even though this list only contains processes involving the nucleon, the discussion
should make it clear that a good understanding of reactions with baryons and mesons,
and the various couplings and form factors they contain, is essential for many questions
in hadron physics, among them hadron spectroscopy.
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A general matrix element can be written as

〈p′1 . . . p′n |T jΓ(x) . . . | p1 . . . pn〉 , (4.5.1)

where {pi} and {p′i} are the onshell momenta of the incoming and outgoing particles.
The legs associated with the currents (if there are any) are offshell, i.e., their squared
momentum is not fixed but arbitrary. After splitting off the spinors uα, ūα for onshell
spin-1

2 particles, or polarization vectors εµ for spin-1 particles etc., the remainder can
be expanded in a tensor basis:

Mµν...
αβ...

(
p′1 . . . pn

)
=

N∑

i=1

Fi(. . . ) τi
(
p′1 . . . pn

)µν...
αβ...

, (4.5.2)

where the Lorentz-invariant amplitudes or form factors Fi(. . . ) are analytic functions
of the invariant momentum variables and carry the information on the process.

Kinematic variables. Let us work out the kinematics for a generic scattering process
shown in Fig. 4.17,

A(pi) +B(ki)→ A′(pf ) +B′(kf ), (4.5.3)

where the incoming and outgoing states are not necessarily on their mass shells. If
all particles are onshell, then the process describes e.g. eN scattering, Nπ scattering
or NN scattering in Figs. (4.15–4.16). If ki is offshell, it corresponds to meson elec-
troproduction or virtual Compton scattering, and if also kf is offshell, doubly-virtual
Compton scattering. An example where only pf is offshell is inelastic eN scattering,
where pf is the total momentum of the decay products.

Let us express the amplitude in terms of three independent momenta

p =
pi + pf

2
, k =

ki + kf
2

, q = pf − pi = ki − kf , (4.5.4)

where p and k are the average momenta of A and B, respectively, and q is the momen-
tum transfer, with the inverse relations

pi = p− q
2 ,

pf = p+ q
2 ,

ki = k + q
2 ,

kf = k − q
2 .

(4.5.5)

The amplitudes Fi(. . . ) can then depend on six Lorentz invariants p2, k2, q2, p · k, p · q
and k · q. It is convenient to define the Mandelstam variables s, u and t,

s = (pi + ki)
2 = (pf + kf )2 = (p+ k)2,

u = (pi − kf )2 = (pf − ki)2 = (p− k)2,

t = (pf − pi)2 = (ki − kf )2 = q2 ,

(4.5.6)

whose sum is

s+ t+ u = 2p2 + 2k2 + q2 = p2
i + p2

f + k2
i + k2

f . (4.5.7)
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Fig. 4.17: Kinematics in 2→ 2 scattering and Mandelstam plane for identical masses.

If we write p2
i = M2, k2

i = m2, p2
f = M ′2 and k2

f = m′2, then the six independent
variables are given by

t = q2 , λ =
p · k
M2

=
s− u
4M2

, (4.5.8)

where we defined the crossing variable λ, and

p2 + k2

2
=
M2 +M ′2 +m2 +m′2 − q2

4
=
s+ u

4
,

p2 − k2

2
=
M2 +M ′2 −m2 −m′2

4
,

ω =
p · q
2M2

=
M ′2 −M2

4M2
,

ω′ =
k · q
2M2

=
m2 −m′2

4M2
.

For one-particle exchanges in the t channel like in Fig. 4.15, t is the squared momentum
of the exchange particle and it is common to define the momentum transfer variable

τ = − q2

4M2
=

Q2

4M2
. (4.5.9)

In a 2 → 2 scattering process where all particles are onshell and their masses are
fixed, only t and λ remain independent. They define the Mandelstam plane, where
the physical regions of the process and its singularity structure can be visualized. The
s, t and u-channel processes correspond to

s channel : 1 + 2→ 3 + 4 ,

t channel : 1 + 3̄→ 2̄ + 4 ,

u channel : 1 + 4̄→ 2̄ + 3 ,

(4.5.10)

where e.g. 3̄ is the antiparticle of 3 with opposite momentum. Crossing symmetry
implies that all these processes are described by the same amplitudes Fi(s, t, u) but
with different physical domains on the Mandelstam plane. In the s-channel reaction,
s > (M +m)2 is the square of the total energy in the center-of-mass (CM) frame and t
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is the momentum transfer. In the t and u-channel processes, these roles are exchanged.
For example, in Nπ scattering the three processes are

s channel : N(pi) + π+(ki)→ N(pf ) + π+(kf ) ,

t channel : N(pi) + N̄(−pf )→ π−(−ki) + π+(kf ) ,

u channel : N(pi) + π−(−kf )→ π−(−ki) +N(pf ) ,

(4.5.11)

where the s, u channels correspond to Nπ scattering and the t channel to NN̄ ↔ π+π−

annihilation. In this case the amplitude is symmetric under s↔ u crossing and there-
fore the Fi can only depend on t and λ2.

In general, the physical regions in the Mandelstam plane are determined by the
Kibble function

Φ = stu− as+ bt+ cu

M2 +M ′2 +m2 +m′2
≥ 0 , (4.5.12)

where

a = (M2m2 −M ′2m′2)(M2 +m2 −M ′2 −m′2) ,

b = (M2M ′
2 −m2m′

2
)(M2 −m2 +M ′

2 −m′2) ,

c = (M2m′
2 −M ′2m2)(M2 −m2 −M ′2 +m′

2
) .

(4.5.13)

For an elastic scattering process with M = M ′ and m = m′, this reduces to a = c = 0
and therefore

Φ = t
[
su− (M2 −m2)2

]
≥ 0 . (4.5.14)

The simplest case where all masses are equal and therefore stu ≥ 0 is shown in Fig. 4.17.
Examples for such processes are ππ or NN scattering. The natural variables to describe
the physical s-channel region (s ≥ 0, t ≤ 0, u ≤ 0) are then the Mandelstam variable
s ≥ 4M2 and the angular variable z = cos θCM with −1 ≤ z ≤ 1, where θCM is
the scattering angle in the CM frame, see Eq. (4.5.26). Forward scattering (θCM = 0)
corresponds to t = 0 and backward scattering (θCM = π) to u = 0. Employing Legendre
polynomials Pl(z), one can perform a partial-wave expansion of the amplitude:

F (s, z) =
∞∑

l=0

(2l + 1)Fl(s)Pl(z) . (4.5.15)

The Mandelstam plane is particularly useful for studying the analytic structure of
the amplitudes. Analyticity means that the scattering amplitudes are analytic functions
of s, t and u regarded as complex variables. Their only singularities are those imposed
by unitarity, which are simple poles due to the exchange of physical particles and
branch cuts due to intermediate multiparticle states. For example, if the s-channel
process in Fig. 4.17 generates a bound state below the two-particle threshold, it will
show up as a pole at some constant s < 4M2 which is a line in the Mandelstam plane.
A resonance above threshold will form another line of constant s, however with a pole
on a higher Riemann sheet that can at best produce a bump in the partial wave Fi(s).
If the amplitude is crossing-symmetric in s↔ u, the same singularity structure in the
u channel appears through lines of constant u. If the t-channel process produces bound
states and resonances, they will form lines of constant t. Thus, the angular dependence
of the amplitude at fixed s will be influenced by singularities in crossed channels.
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In deep inelastic scattering eN → eX, m = m′ is the electron mass and M the
nucleon mass, whereas W = M ′ is the total invariant mass of the particles in the final
state X, which is not fixed (also called the ‘missing mass’). The process is described
by the three variables {s, t, u} or, equivalently, τ , λ and any of the variables

ω =
W 2 −M2

4M2
, ν =

pi · q
M

= 2M (τ + ω) , x = − q2

2Mν
=

τ

τ + ω
. (4.5.16)

With W ≥M , the Bjorken variable 0 < x ≤ 1 reduces to x = 1 for elastic scattering.
In Sec. 5.1 we will see that for a one-photon exchange interaction the hadronic part
γ∗N → X does not depend on λ but only on τ and ω. It is parametrized by the nucleon’s
structure functions, which are usually expressed in terms of {τ, x} or {ν, x}.

Finally, in processes such as Compton scattering or photo- and electroproduction,
the onshell nucleon has mass M = M ′ whereas m2 or m′2 (or both of them) can be
virtual. The amplitude then depends on four variables, for example {s, t, u, ω′} or
{τ, λ,m2,m′2}, where ω′ is related to the ‘skewness’ variable.

So far we have not specified any Lorentz frame because the above variables are Lorentz-invariant.
Their interpretation in terms of energies and a scattering angle, however, depends on the reference
frame. In the following we work out the kinematics in the center-of mass and laboratory frames.

� In the s-channel center-of-mass (CM) frame the spatial component of the total momentum
pi + ki = pf + kf vanishes:

pi =

(
ε

k

)
, ki =

(
E

−k

)
, pf =

(
ε′

k′

)
, kf =

(
E′

−k′

)
. (4.5.17)

For fixed masses, only two of the variables in (4.5.17) are independent, for example the CM momentum
|k| and the scattering angle defined by k ·k′ = |k||k′| cos θCM, which can be related to the Mandelstam
variables s and t. The variable s = (pi + ki)

2 = (ε+E)2 = (ε′ +E′)2 is the total CM energy squared.
From the mass-shell conditions one can express all energies in terms of s,

ε =
s+M2 −m2

2
√
s

, E =
s−M2 +m2

2
√
s

, ε′ =
s+M ′

2 −m′2

2
√
s

, E′ =
s−M ′2 +m′

2

2
√
s

(4.5.18)

as well as the three-momenta:

k2 = ε2 −M2 = E2 −m2 =

[
s− (M +m)2

] [
s− (M −m)2

]
4s

=
λ̄(s,M2,m2)

4s
,

k′2 = ε′
2 −M ′2 = E′

2 −m′2 =

[
s− (M ′ +m′)2

] [
s− (M ′ −m′)2

]
4s

=
λ̄(s,M ′

2
,m′

2
)

4s
.

(4.5.19)

The triangle function λ̄(x, y, z) is defined as

λ̄(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz (4.5.20)

and invariant under permutation of its arguments. The variable t is given by

t = (pi − pf )2 = (ε− ε′)2 − (k − k′)2 = M2 +M ′
2 − 2εε′ + 2|k||k′| cos θCM , (4.5.21)

from where one can relate the scattering angle to s and t:

cos θCM =
s2 + 2st− s(M2 +M ′

2
+m2 +m′

2
) + (M2 −m2)(M ′

2 −m′2)√
λ̄(s,M2,m2) λ̄(s,M ′2,m′2)

. (4.5.22)

For elastic scattering with M = M ′, m = m′ these relations simplify to ε = ε′, E = E′, k2 = k′
2
,

cos θCM = 1 +
2st

λ̄(s,M2,m2)
, λ̄(s,M2,m2) = (s−M2 −m2)2 − 4M2m2 (4.5.23)
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and the Mandelstam variables in terms of k2 and cos θCM become

s =
(√

k2 +M2 +
√
k2 +m2

)2

,

t = −2k2 (1− cos θCM) ,

u = −2k2 (1 + cos θCM) +
(√

k2 +M2 −
√
k2 +m2

)2

.

(4.5.24)

If all masses are equal (m = M), we obtain

ε = E =

√
s

2
, k2 =

s− 4M2

4
, cos θCM = 1 +

2t

s− 4M2
, λ̄(s,M2,M2) = s (s− 4M2) (4.5.25)

and the Mandelstam variables become

s = 4 (k2 +M2) , t = −2k2 (1− cos θCM) , u = −2k2 (1 + cos θCM) . (4.5.26)

Here, forward scattering (θCM = 0) corresponds to t = 0 and backward scattering (θCM = π) to u = 0.

� Next, we consider the lab frame where pi is at rest:

pi =

(
M

0

)
, ki =

(
E

k

)
, pf =

(
ε′

p′

)
, kf =

(
E′

k′

)
. (4.5.27)

We use the same symbols E, E′, ε, k and k′ as before, but keep in mind that these quantities are
not the same as in Eq. (4.5.17) since they are the energies and three-momenta in the lab frame. The
scattering angle in the lab frame is defined by k · k′ = |k||k′| cos θ. In this case we have

s = (pi + ki)
2 = (M + E)2 − k2 = M2 +m2 + 2ME ,

t = (pf − pi)2 = (ε′ −M)2 − p′2 = M2 +M ′
2 − 2Mε′ ,

u = (pi − kf )2 = (M − E′)2 − k′2 = M2 +m′
2 − 2ME′ ,

(4.5.28)

from where we can relate the energies to the Mandelstam variables:

E =
s−M2 −m2

2M
, E′ =

M2 +m′
2 − u

2M
, ε′ =

M2 +M ′
2 − t

2M
. (4.5.29)

The three-momenta are then given by

k2 = E2 −m2 =
λ̄(s,M2,m2)

4M2
,

k′
2

= E′
2 −m′2 =

λ̄(u,M2,m′
2
)

4M2
,

p′
2

= ε′
2 −M ′2 =

λ̄(t,M2,M ′
2
)

4M2
.

(4.5.30)

The Mandelstam variables are related by s+ t+ u = M2 +M ′
2

+m2 +m′
2
. The scattering angle in

the lab frame can be worked out using

t = (ki − kf )2 = (E − E′)2 − (k − k′)2 = m2 +m′
2 − 2EE′ + 2|k||k′| cos θ , (4.5.31)

from where we obtain

cos θ =
2M2(t−m2 −m′2)− (s−M2 −m2)(u−M2 −m′2)√

λ̄(s,M2,m2) λ̄(u,M2,m′2)
. (4.5.32)

� A practical example for the case m = m′ = 0 is (elastic or inelastic) eN scattering with a
nucleon mass M and electron mass m = m′ �M . The lab frame is the natural frame for fixed-target
experiments, where the experimental control parameters are the initial and final lepton energies E, E′

and the scattering angle θ. In this case the above relations become

E = |k| = s−M2

2M
, E′ = |k′| = M2 − u

2M
, ε′ =

M2 +M ′
2 − t

2M
, p′

2
=
λ(t,M2,M ′

2
)

4M2
, (4.5.33)
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and the scattering angle is given by

sin2 θ

2
=

1− cos θ

2
=

M2t

(s−M2)(u−M2)
. (4.5.34)

Expressing the Mandelstam variables through τ , λ and ω defined in Eqs. (4.5.8–4.5.9),

s = M2 [1 + 2 (τ + ω + λ)] ,

u = M2 [1 + 2 (τ + ω − λ)] ,
t = −4M2τ (4.5.35)

we find
E = M (λ+ τ + ω) ,

E′ = M (λ− τ − ω) ,
sin2 θ

2
=

τ

λ2 − (τ + ω)2
. (4.5.36)

The condition (4.5.12) for the physical region becomes

Φ = t (su−M2M ′
2
) = −16M4 τ

[
τ + (τ + ω)2 − λ2] ≥ 0 . (4.5.37)

From the inverse relations

λ =
E + E′

2M
, τ =

EE′

M2
sin2 θ

2
, ω + τ =

E − E′

2M
(4.5.38)

we see that the crossing variable is proportional to the average lepton energy. The variable ν from
Eq. (4.5.16) plays the role of the energy transfer from the electron to the proton, ν = E − E′, and
another commonly used variable is

y =
pi · q
pi · ki

=
2 (τ + ω)

λ+ τ + ω − ω′ = 1− E′

E
, (4.5.39)

which becomes the lepton energy loss (0 ≤ y ≤ 1) in the lab frame. In the case of elastic scattering
(ω = 0) there are only two independent variables and we have the additional constraint

E′ =
E

1 + 2E
M

sin2 θ
2

. (4.5.40)

� We also work out the cross section for eN scattering. The general form of the cross section for
2→ n-particle scattering has the form

dσ =
|M|2 dΦ

4
√

(pi · ki)2 −M2m2
, (4.5.41)

where |M|2 is the invariant amplitude, dΦ is the phase space element and the denominator is the
incoming flux factor. For two particles in the final state, the phase space is given by

dΦ =
d3pf

(2π)3 2ε′
d3kf

(2π)3 2E′
(2π)4 δ4(pi + ki − kf − pf ) , (4.5.42)

where pf and kf are the outgoing momenta and ε′ and E′ their energies in the lab frame, cf. (4.5.27).
Integration over d3pf removes the three-dimensional δ−function for three-momentum conservation.
For vanishing electron masses, inserting d3kf = dE′E′

2
dΩ yields

dΦ =
dΩ

(4π)2

E′

ε′
dE′ δ(M + E − E′ − ε′) . (4.5.43)

We can express the final-state energy by ε′ =
√
q2 +W 2 =

√
q2 +M2 + 4M2ω, where for elastic scat-

tering the energy-conservation constraint is satisfied for ω = 0. Hence, we can rewrite the δ−function
in the variable ω:

δ(M + E − E′ − ε′) =
ε′

2M2
δ(ω) ⇒ dΦ =

dΩ

(4π)2

E′

2M2
dE′ δ(ω) . (4.5.44)

On the other hand, we have∫
dE′ f(E′)

δ(ω)

2M
=

f(E′)

2M
∣∣ dω
dE′

∣∣
ω=0

(4.5.38)
=

f(E′)

1 + 2E
M

sin2 θ
2

∣∣∣∣
ω=0

(4.5.40)
= f(E′)

E′

E
. (4.5.45)

Combining this with the flux factor 4pi · ki = 4ME, we arrive at

dσ

dΩ
=

1

4M2

|M|2

16π2

E′
2

E2
. (4.5.46)
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4.5.2 Form factors

We already motivated the basic ideas behind form factors from an experimental point
of view in Sec. 4.5.1. When resolving the structure of a hadron using electromagnetic
and weak interactions, the elementary structure observables are form factors. Viewed
from a distance, the proton looks like a point fermion that only carries a charge and a
magnetic moment, but when probed with short-wavelength photons (or other currents)
it reveals more and more of its composite nature which is encoded in the momentum
dependence of its form factors.

Form factors are encoded in the current matrix elements

〈λ′(pf )| jΓ
a (0) |λ(pi)〉 , (4.5.47)

where |λ(pi)〉 is a one-particle state with onshell momentum pi and |λ′(pf )〉 one with
momentum pf . The currents jΓ

a (x) can be any of the quark bilinears in Eq. (3.1.23)
such as vector, axialvector, scalar or pseudoscalar currents. On theoretical grounds, a
current matrix element can be motivated in several ways:

� In Eq. (3.1.147) we saw that current matrix elements arise from elementary corre-
lation functions at the pole positions, i.e., they are the residues at the hadronic double
pole. This also gives us an intuitive way to understand elastic and transition form
factors: in the second case, the initial and final hadrons can be different and cor-
respond to different poles, provided that the symmetries in the process (e.g. baryon
number conservation) are preserved.

� In Eq. (3.1.141) we found that the contraction of the Bethe-Salpeter wave function
with a Dirac-flavor matrix Γ ta gives rise to decay constants 〈0| jΓ(0) |λ(p)〉, which are
gauge invariant and depend on the onshell momentum p. In the same way, a current
matrix element arises from the contraction of the object 〈λ′(pf )|Tψα(x)ψβ(y) |λ(pi)〉
with open quark and antiquark legs:

− (ta)ji Γβα 〈λ′(pf )|Tψαi(x)ψβj(x) |λ(pi)〉
= 〈λ′(pf )| jΓ

a (x) |λ(pi)〉 = 〈λ′(pf )| jΓ
a (0) |λ(pi)〉 eiq·x ,

(4.5.48)

where q = pf −pi. Thus, the current couples to the quarks inside the hadrons as shown
in Fig. 4.18. The resulting matrix element is again gauge invariant and depends on the
two onshell momenta pf and pi.

The three-point function depends on two independent momenta, e.g. the incoming
and outgoing momenta pi and pf , or their combinations p = (pi + pf )/2 and the
momentum transfer q = pf − pi. For elastic form factors we have p2

i = p2
f = M2 and

therefore

pf = p+ q
2

pi = p− q
2

⇒ p2
f = p2 + q2

4 + p · q !
= M2

p2
i = p2 + q2

4 − p · q
!

= M2
⇒ p · q = 0

p2 = M2 − q2

4 .
(4.5.49)

Thus, the only independent variable is the squared momentum transfer q2. Because
q2 < 0 is spacelike in s−channel processes such as eN scattering, we work with the
spacelike momentum transfer Q2 = −q2 or equivalently τ = Q2/(4M2).
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Fig. 4.18: Current matrix element of a hadron, viewed as the Dirac-flavor contraction of the
four-point function in Eq. (4.5.48) in analogy to the Bethe-Salpeter wave function.

Form factors. As a specific case of Eq. (4.5.2), form factors are the Lorentz-invariant
coefficients of current matrix elements. As an example, consider a spin-1

2 particle and a
vector current V µ = ψγµψ. In this case, the general decomposition involves the Dirac
and Pauli form factors F1(q2) and F2(q2):

〈pf , s′|V µ(0) |pi, s〉 = ūs′(pf )

[
γµF1(q2) + σµν

iqν
2M

F2(q2)

]
us(pi) . (4.5.50)

Here σµν = i
2 [γµ, γν ] and us(pi), ūs′(pf ) are the onshell Dirac spinors with normaliza-

tion ūs′(p)us(p) = 2M δss′ . The dimensionless form factors depend only on q2. For
two flavors, the isoscalar and isovector form factors correspond to the currents

V µ = ψγµψ = ūγµu+ d̄γµd ,

V µ
3 = ψ γµ t3 ψ = 1

2 (ūγµu− d̄γµd)
(4.5.51)

and the electromagnetic form factors, which are linear combinations of them, to
the electromagnetic current V µ

em from Eq. (3.1.92) with the quark charge matrix

Q =

(
qu 0
0 qd

)
=
1

6
+
τ3

2
. (4.5.52)

Why are there just two form factors in Eq. (4.5.50)? Consider the most generic
form of a vector-spinor three-point function Ωµ(p, q). Poincaré covariance and parity
invariance in principle allows for 12 tensor structures, for example

{γµ, pµ, qµ} × {1, /p, q/, [/p, q/]} (4.5.53)

or linear combinations of those. After sandwiching between the onshell nucleon spinors
ū(pf ) and u(pi), we can use the Dirac equation (/p−M)u(p) = 0 to eliminate all slashes:

ū(pf ) q/ u(pi) = ū(pf ) (/pf − /pi)u(pi) = 0 ,

ū(pf ) /p u(pi) = ū(pf )
/pf + /pi

2
u(pi) = M ū(pf )u(pi) ,

ū(pf ) [γµ, q/]u(pi) = 4 ū(pf ) (pµ −Mγµ)u(pi) ,

(4.5.54)

where the last relation is the Gordon identity. As a result, we are left with γµ, pµ

and qµ only.
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In addition, charge conjugation imposes the condition

C Ωµ(−p, q)TCT !
= −Ωµ(p, q) , (4.5.55)

where C = iγ2γ0 is the charge-conjugation matrix. This is satisfied for γµ and pµ but
not for qµ, which has opposite C−parity. To restore it, we would need to attach a
factor p · q so that (p · q) qµ becomes the third basis element, but p · q = 0 because the
nucleon is onshell, cf. Eq. (4.5.49). Hence, a vector current matrix element can only
depend on γµ and pµ. Finally, we use the Gordon identity to express pµ in terms of γµ

and σµνqν = i
2 [γµ, q/], which leads to the form in (4.5.50).

The same principles can be used to establish the matrix elements of an axialvector
current Aµ(0), a pseudoscalar density P (0) and a scalar density S(0). In these cases,
the bracket in (4.5.50) must be replaced with

γµγ5GA(q2) + γ5
qµ

2M
GP (q2) , G5(q2) iγ5 , GS(q2) , (4.5.56)

respectively. GA(q2) is the axial form factor and GP (q2) the ‘induced’ pseudoscalar
form factor of a spin-1/2 baryon. In the limit q2 → 0, the axial form factor becomes
the axial charge gA = GA(0), whose experimental value gA ≈ 1.27 for the nucleon is
known from neutron beta decay. G5(q2) and GS(q2) are the pseudoscalar and scalar
form factors.

One can also write down current matrix elements for baryons with higher spin
(e.g. for J = 3/2 the Dirac spinors must be replaced by Rarita-Schwinger spinors),
which produces more tensors and thus more form factors, or transition matrix elements
between baryons with different spins, or meson form factors, etc.

Current conservation. Next, we want to work out the implications of current con-
servation for the matrix elements. Vector current conservation ∂µV

µ = 0 implies

∂µ 〈λ′|V µ(x) |λ〉 = 〈λ′|V µ(0) |λ〉 ∂µ eiq·x = iqµ 〈λ′|V µ(0) |λ〉 eiq·x !
= 0 , (4.5.57)

which means that the vector current matrix element must be transverse with respect
to the momentum transfer qµ. Eq. (4.5.50) already satisfies that constraint because
σµνqµqν = 0 and ū(pf ) q/ u(pi) = 0, so this does not impose any constraints on the
Dirac and Pauli form factors.

In the axialvector case, the PCAC relation ∂µA
µ = 2mP tells us that

∂µ 〈λ′|Aµ(x) |λ〉 = iqµ 〈λ′|Aµ(0) |λ〉 eiq·x !
= 2m 〈λ′|P (0) |λ〉 eiq·x . (4.5.58)

Inserted into the matrix elements and using Eq. (4.5.56), this entails

· · ·
[
i/qγ5GA(q2) + iγ5

q2

2M
GP (q2)

]
· · · = · · ·

[
2mG5(q2) iγ5

]
· · · (4.5.59)

and with /qγ5 = /pfγ5 + γ5 /pi
∼= 2Mγ5 using the Dirac equation, we find that the axial

and pseudoscalar form factors are related:

GA(q2) +
q2

4M2
GP (q2)

!
=
m

M
G5(q2) . (4.5.60)
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Fig. 4.19: Form factors have meson poles
in the t channel.

It appears that gA should vanish in the
chiral limit m → 0, but this is not the case
because the pseudoscalar form factor con-
tains pion poles. The four-point function in
Fig. 4.18 must develop meson poles in the
t channel for q2 = m2

λ, since NN̄ and qq̄
are compatible with meson quantum num-
bers. According to Eq. (3.1.121), the residue
involving the qq̄ pair is the Bethe-Salpeter
wave function of the respective meson and the
residue on the NN̄ pair is the nucleon-meson
coupling constant. Contracted with γ5, this
only leaves pseudoscalar-meson poles whose
residues rλ we defined in Eq. (3.1.142). Thus,
at the pion pole G5(q2) must have the form

G5(q2) = − 2rπ
q2 −m2

π

GπNN (q2)
(3.1.143)

= − m2
π

q2 −m2
π

fπ
m
GπNN (q2) , (4.5.61)

which is illustrated in Fig. 4.19. Here we defined an effective pion-nucleon form factor
GπNN (q2), which absorbs all further pseudoscalar pole contributions and non-resonant
terms and reduces to the pion-nucleon coupling constant GπNN (q2 = m2

π) = gπNN
at the pion pole. The factor 2 accounts for G5 ta ∼ 2GπNN ta = GπNN τa and the
minus sign makes G5(q2 < 0) positive. Combined with Eq. (4.5.60), we arrive at the
Goldberger-Treiman relation

gA =
fπ
M

GπNN (0)
chiral limit−−−−−−→ fπ

M
gπNN , (4.5.62)

which connects the nucleon’s axial charge with the pion-nucleon coupling. GπNN (0) is
not measurable in contrast to gπNN ≈ 13.2, which is the residue at the physical pion
mass. Together with the experimental values for fπ ≈ 92 MeV, M ≈ 940 MeV and
gA ≈ 1.27, the Goldberger-Treiman relation is well realized in nature.

Meson resonances. The appearance of t-channel meson poles in form factors has
far-reaching consequences for their analytic structure. Timelike poles appear not only
in the pseudoscalar form factor G5(q2), but also in

� the Dirac and Pauli vector form factors F1(q2) and F2(q2), which have 1−− vector-
meson poles e.g. at q2 = m2

ρ or m2
ω (depending on the isovector/isoscalar channel)

and whose residues are the products of the ρ/ω−nucleon couplings combined with
the ρ/ω−meson decay constants;

� the axial form factor GA(q2) which has axialvector 1++ poles,

� the scalar form factor with scalar poles 0++, etc.

The singularity structure is independent of the hadron because microscopically it orig-
inates from the vertex that describes the coupling of the current to the quarks, like the
quark-photon vertex discussed in Eq. (3.1.146) in the vector case.
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Fig. 4.20: Sketch of a nucleon electromagnetic form factor containing ρ−meson bumps. The
fictitious curve in the unphysical window is based on the pole structure in the (measured) pion
electromagnetic form factor.

In fact, since only the pion is stable with respect to the strong interaction, all other
mesons have non-zero hadronic decay widths. Their poles must then move into the
complex q2 plane onto higher Riemann sheets and only produce bumps on the timelike
q2 axis. The respective branch cuts are generated by intermediate multiparticle states
containing two pions (ρ→ ππ), three pions (ω → πππ), KK̄, etc.

The situation is illustrated in Fig. 4.20 for a generic elastic nucleon vector-isovector
form factor with ρ−meson bumps. A similar picture with appropriate JPC poles would
arise for other types of form factors as well. The form factor’s momentum dependence
in the spacelike domain (Q2 = −q2 > 0) can be extracted from elastic electron-nucleon
scattering as long as the one-photon exchange process is dominant (more on that below).
The timelike region above pp̄ production threshold (q2 > 4M2) can be accessed in e+e−

annihilation. However, meson resonances should be most pronounced in the window
q2 ∼ 0 . . . 4 GeV2 which is experimentally not accessible; in the deep timelike region the
resonance peaks are already washed out. Fortunately, precise data are available for the
pion electromagnetic form factor which should display a similar resonance structure as
in the nucleon case. Here the unphysical window is much smaller (q2 = 0 . . . 4m2

π ≈
0.08 GeV2) and the resonance peaks are indeed directly visible in the data, with a
similar shape as in Fig. 4.20.

The timelike resonance structure can be connected with the spacelike behavior of
the form factors through dispersion relations. Like physical scattering amplitudes,
form factors must be analytic everywhere in the complex Q2 plane except for branch-
point singularities starting at q2 = 4m2

π and extending to infinity, which are due to
intermediate two-pion and multiparticle states. The Cauchy formula then tells us that
the form factor in the domain of analyticity can be inferred from knowledge of its value
on a closed contour, which can be deformed to encompass only the branch cut (see
Fig. 4.21). Since the form factor is analytic everywhere else, the difference above and
below the branch cut is proportional to its imaginary part, i.e., the discontinuity along
the branch cut:

F (z0) =
1

2πi

∮
dz

F (z)

z − z0
=

1

π

∞∫

4m2
π

dz
ImF (z)

z − z0
. (4.5.63)
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Fig. 4.21: Analytic structure of the form factor F (Q2) in the complex Q2 plane and defor-
mation of the integration contour.

Hence, knowledge of the spectral function ImF (z) along the cut is sufficient to de-
termine the spacelike form factor as well. On the other hand, since the experimental
knowledge is limited to q2 > 4M2 ∼ 4 GeV2, one usually has to make assumptions
about the timelike behavior to extract such information.

Cross section for elastic eN scattering. The nucleon’s electromagnetic form factors
in the spacelike region Q2 ≥ 0 are experimentally extracted from elastic eN scattering.
Since the process is reasonably well described by one-photon exchange, we start from
the amplitude (4.1.3) for scattering leptons from a point-like Dirac particle through
one-photon exchange (Born approximation):

Mσσ′λλ′(q, p, k) =
e2

q2
uσ′(pf ) γµ uσ(pi)uλ′(kf ) γµ uλ(ki) . (4.5.64)

We worked out the kinematic variables in Eqs. (4.5.4–4.5.9); in particular, since the
nucleon and electron scatter elastically, we have M = M ′, m = m′ and therefore

p2 = M2 − q2

4
, p · q = 0 , k2 = m2 − q2

4
, k · q = 0 (4.5.65)

so that only τ = Q2/(4M2) and λ = p · k/M2 remain independent variables. For
unpolarized scattering, we take the spin average

|M|2 =
1

4

∑

spins

∣∣M
∣∣2 =

e4

q4
LµνWµν (4.5.66)

which factorizes into a leptonic and a hadronic part. The lepton tensor has the form

Lµν =
1

2

∑

λλ′

ūλ′(kf )γµuλ(ki) ūλ(ki)γ
νuλ′(kf ) =

=
1

2
Tr [(/kf +m) γµ (/ki +m) γν ]

= 2
(
kµf k

ν
i + kµi k

ν
f − ki · kf gµν +m2 gµν

)

= 4kµkν − qµqν + 2

(
q2

4
− k2 +m2

)
gµν = 4

(
kµkν +

q2

4
Tµνq

)
,

(4.5.67)
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where in the final step we used the transverse projector

Tµνq = gµν − qµqν

q2
. (4.5.68)

Because k ·q = 0, the lepton tensor is transverse with respect to the photon momentum
in both Lorentz indices, which reflects the conservation of the leptonic vector current.
For elastic scattering on the hadron side, the hadronic tensor for a structureless fermion
has the analogous form

Wµν =
1

2

∑

σσ′

ūσ′(pf )γµuσ(pi) ūσ(pi)γ
νuσ′(pf ) =

=
1

2
Tr [(/pf +M) γµ (/pi +M) γν ]

= 2
(
pµf p

ν
i + pµi p

ν
f − pi · pf gµν +M2 gµν

)

= 4pµpν − qµqν + 2

(
q2

4
− p2 +M2

)
gµν = 4

(
pµpν +

q2

4
Tµνq

)
,

(4.5.69)

which is again transverse in both Lorentz indices. Using Tµνq Tµν,q = 3 and neglecting
the small electron mass, their combination becomes

LµνWµν = 16

[
(p · k)2 +

q2

4
(k2 + p2) + 3

q4

16

]
= 16M4 (λ2 + τ2 − τ) , (4.5.70)

and with e2 = 4πα the result for the invariant squared amplitude is

|M|2 =
e4

q4
LµνWµν =

16π2α2

τ2
(λ2 + τ2 − τ) . (4.5.71)

We already worked out the cross section for elastic eN scattering in Eq. (4.5.46),

dσ

dΩ
=

1

4M2

|M|2
16π2

E′2

E2
, (4.5.72)

which is expressed through the initial and final lepton energies E, E′ in the lab frame.
Plugging in the result for |M|2, the differential cross section becomes

dσ

dΩ
=

α2

4M2τ2

E′2

E2
(λ2 + τ2 − τ) =

α2 cos2 θ
2

4E2 sin4 θ
2

E′

E
︸ ︷︷ ︸

Mott

(
1 + 2τ tan2 θ

2

)
, (4.5.73)

where we exploited the relations (4.5.36–4.5.38) with ω = 0 to arrive at the second form.
The Mott cross section describes lepton scattering off a pointlike scalar particle in
Born approximation. The parenthesis reflects the nucleon’s nature as a spin-1

2 particle,
which at this point carries no internal structure.

To take the composite nature of the nucleon into account, we must replace the
pointlike Dirac current with the general current matrix element

ū(pf )γµu(pi) −→ ū(pf )

(
γµF1(q2) + σµν

iqν
2M

F2(q2)

)
u(pi) (4.5.74)
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with Pauli and Dirac form factors F1 and F2. Here it is more convenient to work with
the Sachs electric and magnetic form factors

GE(q2) = F1(q2)− τF1(q2) , GM (q2) = F1(q2) + F2(q2) (4.5.75)

since they do not produce interference terms ∝ F1F2 in the cross section. The invariant
amplitude then becomes

|M|2 =
16α2π2

τ2

[
G2
E + τ G2

M

1 + τ
(λ2 − τ2 − τ) + 2τ2G2

M

]
, (4.5.76)

and the resulting cross section is the Rosenbluth cross section:

dσ

dΩ
=

(
dσ

dΩ

)

Mott

(
G2
E + τ G2

M

1 + τ
+ 2τ G2

M tan2 θ

2

)
. (4.5.77)

For a structureless fermion (F1 = 1, F2 = 0 or GE = GM = 1) these formulas reduce
to the previous forms (4.5.71) and (4.5.73).

The Rosenbluth cross section allows one to extract the nucleon’s electromagnetic
form factors under the assumption of one-photon exchange. If we define the kinematic
variable

ε =
λ2 − τ(1 + τ)

λ2 + τ(1 + τ)
=

(
1 + 2(1 + τ) tan2 θ

2

)−1

, (4.5.78)

where ε = 1 corresponds to forward scattering and ε = 0 to backward scattering, the
cross section takes the form

dσ

dΩ
=

(
dσ

dΩ

)

Mott

εG2
E + τ G2

M

ε (1 + τ)
. (4.5.79)
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Fig. 4.22: Sketch of the numerator
in the Rosenbluth cross section.

Because the form factors only depend on τ , at
fixed τ the dependence of the numerator on ε is lin-
ear, which allows one to extract the magnetic form
factor from the intercept at ε = 0 and the electric
form factor from the slope in ε, see Fig. 4.22. This
is known as the Rosenbluth method. In turn,
at large τ (large photon virtualities Q2) one is less
sensitive to GE and therefore GE is not so well
known at large Q2. The traditional Rosenbluth
results yielded GE/GM ≈ const. for the proton at

large Q2, which was in agreement with perturbative scaling arguments. However, more
recent polarization transfer experiments at Jefferson Lab measured the ratio GE/GM
directly and found a falloff with Q2, which even points towards a zero crossing. A likely
explanation is that GE indeed falls off and that the discrepancy is due to two-photon
exchange effects: although the corresponding diagrams enter with α2

QED in the cross

section, they are large enough to interfere with the extraction of GE at large Q2.
The form factors of the proton are directly accessible in ep→ ep scattering, whereas

those of the neutron are extracted from scattering on deuterium since there is no free
neutron target in nature.
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Fig. 4.23: Vertex corrections to the muon-photon vertex which contribute to the muon anoma-
lous magnetic moment. The leading QCD contributions are the hadronic vacuum polarization
and hadronic light-by-light scattering diagrams.

Form factor phenomenology. How can we interpret electromagnetic form factors?
The Dirac and Pauli form factors at vanishing photon momentum encode the nucleons’
charges and their anomalous magnetic moments:

F p1 (0) = 1 , Fn1 (0) = 0 , F p2 (0) = κp ≈ 1.79 , Fn2 (0) = κn ≈ −1.91 .

For the Sachs form factors GE and GM this implies

GpM (0) = µp = 1 + κp = 2.79 , GnM (0) = µn = κn = −1.91 .

The fact that the anomalous magnetic moments differ from zero means that the nucleon
is not a pointlike Dirac particle but carries structure. In the analogous case of leptons,
the coupling of the photon to an electron or muon has the same form as in Eq. (4.5.50).
For pointlike Dirac particles F2(0) is zero, but due to QED corrections one finds

F2(0) =
αQED

2π
+ · · · ≈ 1h . (4.5.80)

The leading diagram is the one-loop vertex dressing in Fig. 4.23, followed by higher-
order QED corrections. The fact that F2(0) is much larger for the proton and neutron
implies that they are far from pointlike. The muon anomalous magnetic moment
(‘muon g − 2’) is particularly interesting: it has been measured to great precision
but there is a current ∼ 4σ discrepancy between experiment and the Standard Model
prediction, which could point towards new physics. Also QCD contributes to this
process through the hadronic vacuum polarization (the diagram in Fig. 3.5) and the
much smaller hadronic light-by-light scattering diagram. Both of these contributions
are tiny compared to the QED effects, but they are almost alone responsible for the
theory uncertainty of the Standard Model prediction.

The slopes of the Dirac and Pauli form factors at Q2 = 0 define the Dirac and Pauli
charge radii:

F1(Q2) = F1(0)− r2
1

6
Q2 + . . . , F2(Q2) = F2(0)

[
1− r2

2

6
Q2 + . . .

]
. (4.5.81)

The electric and magnetic charge radii are defined accordingly from GE and GM . Also
here there has been a surprise in the form of the proton radius puzzle: The electric
charge radius of the proton measured in muonic hydrogen was found to be significantly
smaller (rpE ≈ 0.84 fm) than the previously established CODATA value inferred from
ep scattering and hydrogen spectroscopy (rpE ≈ 0.88 fm). Possible explanations include
again new physics or two-photon effects, although several new measurements (including
ep scattering) tend to agree with the lower radius as well.
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Empirically, it turns out that the Sachs form factors can be reasonably well described
by a dipole shape over a wide Q2 range (except for GnE which vanishes at the origin).
The ’dipole mass’ Λ can then be used to estimate the charge radii:

Gi(Q
2) ≈ Gi(0)

(1 +Q2/Λ2)2
, Λ ≈ 0.84 GeV ⇒ ri ≈ ~c

√
12

Λ
≈ 0.8 fm , (4.5.82)

with ~c = 0.197 GeV fm. Such a dipole behavior for the Sachs form factors agrees with
perturbative QCD predictions but has been challenged by measurements of GpE/G

p
M

at larger Q2 as mentioned above.
Non-relativistically, form factors can be interpreted as Fourier transforms of charge

distributions. Consider the scattering of an electron from a static, spinless source
generated by a charge distribution ρ(x) that generates the vector potential Aµ(x):

2Aµ = jµ , Aµ =

(
A0

0

)
, jµ =

(
eρ
0

)
. (4.5.83)

The invariant matrix element is given by

M = ie ū(kf )γµu(ki)

∫
d4x e−iq·xAµ(x)

︸ ︷︷ ︸
(2π) δ(E − E′) e

q2
F (q) δ0

µ

(4.5.84)

which comes about as follows: Because Aµ(x) is time-independent, its Fourier trans-
form in time produces a δ−function δ(q0), which enforces E = E′ for the lab energies of
the incoming and outgoing electron, cf. Eq. (4.5.27). The Maxwell equation 2Aµ = jµ

then reduces to ∆A0 = −eρ, and a partial integration yields
∫
d3x eiq·xA0(x) =

e

q2

∫
d3x eiq·x ρ(x) =:

e

q2
F (q) , (4.5.85)

where we defined the form factor F (q) as the Fourier transformation of the charge
density. Therefore, it measures the deviation from the pointlike nature of the source.
For a spherically symmetric charge distribution ρ(x) = ρ(|x|) = ρ(r) normalized to∫
d3x ρ(x) = 1, the form factor at small |q| can be expanded in

F (q) =

∫
d3x ρ(x)

(
1 + iq · x− (q · x)2

2
+ . . .

)
= 1− |q|

2

6
4π

∫
dr ρ(r) r4

︸ ︷︷ ︸
〈r2〉

+ . . .

The coefficient of the quadratic term is the mean-square radius of the ’charge cloud’,
which motivates the definition of the charge radius in Eq. (4.5.81).

Examples for charge distributions and their corresponding form factors are shown
in Fig. 4.24: A pointlike charge corresponds to a constant form factor, an exponential
charge distribution to a dipole form factor,

ρ(r) =
Λ3

8π
e−Λr ⇔ F (q) =

∫
d3x eiq·x ρ(x) =

1

(1 + |q|2/Λ2)2
, (4.5.86)

a Gaussian to a Gaussian and a homogeneous sphere to an oscillating form factor.
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Fig. 4.24: Charge distributions and form factors.

For relativistic nucleons, the interpretation of form factors being Fourier transforms
of charge and magnetization distributions has to be taken with a grain of salt. The
formulas still look similar to the nonrelativistic case in the Breit frame, where the
incoming and outgoing proton have opposite momenta (pf = −pi = q/2) and hence
the same energies, so that the photon transfers no energy and E′ = E; this also implies
Q2 = −q2 = |q|2. Furthermore, the vector current matrix element in the Breit frame
reduces to the form

〈pf , σ′|V 0 |pi, σ〉 = 2M GE δσ′σ , 〈pf , σ′|V |pi, σ〉 = GM χ†σ′ iτ × q χσ ,
hence the name ‘electric’ and ‘magnetic’ form factors. The charge densities extracted
from the experimentally measured GpE and GnE have shapes shown in Fig. 4.25, which
has led to the picture of a neutron behaving like a proton with a positively charged core
and a negatively charged pion cloud. However, since there is a different Breit frame
for each value of Q2, the relation to charge densities in the lab frame (the rest frame of
the nucleon) will suffer from relativistic boost corrections and hence the interpretation
of the radii as actual charge and magnetization radii is not directly applicable. In
general, while the Lorentz-invariant form factors uniquely specify the electromagnetic
structure of a hadron, their physical interpretation in terms of spatial densities depends
on the reference frame.

Magnetic moments in the quark model. Current matrix elements encode the
complicated nonperturbative substructure of hadrons and have become amenable to
first-principle calculations only in recent years. Nevertheless, we can infer simple re-
lations already from the nonrelativistic quark model. We saw in Eq. (3.2.79) that the
spin-flavor wave functions for ground-state baryon octet states can be written as the
combination of a flavor and a spin doublet:

|λσ〉 = Dλ · Dσ =

2∑

m=1

DλmDσm , λ ∈ {p, n,Σ+, . . . } , σ ∈ {↑, ↓}, (4.5.87)

combined with a symmetric spatial wave function and the antisymmetric color part.
The flavor doublets Dλ are the flavor wave functions in Table 3.4, and the SU(2) spin
doublets Dσ follow if we replace u by ↑ and d by ↓. The index m denotes the doublet
entries.
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Fig. 4.25: Sketch of the electric charge distributions for proton and neutron in the Breit
frame extracted from the measured form factors GpE(Q2) and GnE(Q2).

In the following we are only interested in the spin-flavor part. Its unit normalization
is ensured via

〈λ′σ′|λσ〉 =
1

N
∑

m′m

(
Dλ′m′

)† (Dλm
) (
Dσ′m′

)† (Dσm
) !

= δλ′λ δσ′σ , (4.5.88)

from where the factor N has to be determined. From Table 3.4 one can verify

(
Dpm′

)† (Dpm
)

=
(
Dnm′

)† (Dnm
)

=
(
D↑m′

)† (D↑m
)

= δm′m , (4.5.89)

e.g. with u†u = d†d = 1, u†d = d†u = 0:

(
Dp1
)† (Dp1

)
=

1

2
(u†d†u† − d†u†u†) (udu− duu) = 1 , etc. (4.5.90)

Inserting this in (4.5.88) yields

〈p↑|p↑〉 = 〈n↑|n↑〉 =
1

N Tr

(
1 0
0 1

)
=

2

N ⇒ N = 2 . (4.5.91)

The expectation value of a generic flavor (F) and spin (Γ) operator is then

〈λ′σ′|FΓ |λσ〉 =
3

N
∑

m′m

(
Dλ′m′

)†
F
(
Dλm
)

︸ ︷︷ ︸
=:Fλ

′λ
m′m

(
Dσ′m′

)†
Γ
(
Dσm
)

︸ ︷︷ ︸
=:Γσ

′σ
m′m

=
3

2
Tr
{
Fλ
′λTΓσ

′σ
}
, (4.5.92)

which is understood in the sense that F and Γ act on the flavor and spin indices of the
third quark in each doublet D, and the factor 3 counts the three possible permutations.
The trace in the last equation goes over the doublet indices. It is useful to work out
the flavor and spin matrix elements of the SU(2) unit matrix and the Pauli matrix τ3

for proton and neutron (use τ3 u = u, τ3 d = −d):

1↑↑ = 1pp = 1nn =

(
1 0
0 1

)
, τ↑↑3 = τpp3 = −τnn3 =

(
1 0
0 −1

3

)
. (4.5.93)

The matrix elements of the unit matrix are just those in (4.5.89). Their combination
yields the two-flavor quark charge matrix, cf. Eq. (4.5.52):

Q =

(
qu 0
0 qd

)
=
1

6
+
τ3

2
⇒ Qpp =

2

3

(
1 0
0 0

)
, Qnn =

1

3

(
−1 0
0 1

)
, (4.5.94)
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from where one obtains the charges of proton and neutron:

〈p↑|Q |p↑〉 =
3

2
TrQpp = 1 , 〈n↑|Q |n↑〉 =

3

2
TrQnn = 0 (4.5.95)

as well as their magnetic moments:

〈p↑|Q τ3 |p↑〉 =
3

2
Tr
{
Qpp τ↑↑3

}
= 1 ,

〈n↑|Q τ3 |n↑〉 =
3

2
Tr
{
Qnn τ↑↑3

}
= −2

3 ,

(4.5.96)

apart from the remaining spatial integral. However, since the spatial part is taken to
be identical for proton and neutron, the last relation yields the quark-model relation
µn/µp = −2

3 which is quite close to the experimental value −0.685. Similarly, one can
also work out the magnetic moments for the other ground-state octet members:

µΣ+ = 1 , µΣ0 = 1
3 , µΣ− = µΞ− = µΛ = −1

3 , µΞ0 = −2
3 , (4.5.97)

and in principle also those of the decuplet baryons.
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