
Chapter 2

QCD

Quantum Chromodynamics (QCD) is the theory of the strong interaction. It describes
the ‘color force’ that binds quarks and gluons to colorless hadrons (protons, neutrons,
pions, etc.) and hadrons to nuclei. At hadronic scales, the strong force is ∼ 100 times
stronger than the electromagnetic interaction, extremely short-ranged (the typical in-
teraction range is the size of a hadron ∼ 1 fm = 10−15 m), and its typical energy scale
is the mass of the proton ∼ 1 GeV.

The strong interaction is described by a local, non-Abelian SU(3)C gauge theory
with several peculiar features. While quarks and gluons are asymptotically free at short
distances, they are confined at large distances: only colorless bound states (hadrons)
can be detected in experiments, and no quark or gluon has ever been observed directly.
Nevertheless, nature has given us an abundance of evidence that these constituents ex-
ist, and their theoretical description in terms of a non-Abelian gauge theory has evolved
from being considered a mere mathematical trick to a quite fundamental framework.
In this chapter we will recapitulate the properties of QCD and its fundamental degrees
of freedom and postpone the discussion of hadrons to Chapter 3.

2.1 QCD Lagrangian

Field content. The definition of a quantum field theory starts with constructing its
Lagrangian L (or, equivalently, its action S =

∫
d4xL), based on the desired underly-

ing symmetries. The symmetries of QCD are: Poincaré invariance, local color gauge
invariance and various flavor symmetries, and the fields in the Lagrangian should trans-
form under representations of these groups. The QCD Lagrangian contains quark and
antiquark fields, and (as a consequence of color gauge invariance) gluon fields which
mediate the strong interaction:

ψα,i,f (x) , ψα,i,f (x) , Aµa(x) . (2.1.1)

The quark fields are Dirac spinors (index α) and transform under the fundamental
representation of SU(3)C (color index i = 1, 2, 3 or red, green blue). The additional
index f = 1 . . . Nf labels the flavor quantum number (f = up, down, strange, charm,
bottom, top). The eight gluon fields Aµa(x) are Lorentz vectors; there is one field
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for each generator ta of the group (a = 1 . . . 8). In the fundamental representation:
ta = λa/2, where the λa are the eight Gell-Mann matrices; see Appendix A for a
collection of basic SU(N) relations. Gluons are flavor-blind and carry no flavor labels.

Gauge invariance. A free fermion Lagrangian ψ (i/∂ − m)ψ constructed from the
quark and antiquark fields (we leave the summation over Dirac, color and flavor indices
implicit) is invariant under global SU(3)C transformations

ψ′(x) = Uψ(x), ψ′(x) = ψ(x)U † with U = eiε = ei
∑
a εata , (2.1.2)

where εa = const. and the Uij act on the color indices of the quarks. This invariance
is no longer satisfied if we impose a local SU(3)C gauge symmetry ψ′(x) = U(x)ψ(x)
with spacetime-dependent group parameters εa(x). The mass term is still invariant,
but the derivative in the kinetic term now also acts on the spacetime argument of U(x),
and invariance of the Lagrangian (or the action) cannot be satisfied with an ordinary
partial derivative. To ensure local color gauge invariance, we introduce a covariant
derivative and thus gluon fields:

Dµ = ∂µ − igAµ , (2.1.3)

where Aµ(x) =
∑
Aµa(x) ta is an element of the Lie algebra. From the new Lagrangian

ψ (i /D−m)ψ we see that /Dψ must transform in the same way as the quark field itself,
which fixes the transformation properties of the gluon fields:

ψ′ /D′ψ′
!

= ψ /Dψ ⇒ D′µ ψ
′ = UDµψ = UDµU

†ψ′ (2.1.4)

⇒ (∂µ − igA′µ)ψ′ = U (∂µ − igAµ)U †ψ′

⇒ A′µ = UAµ U
† +

i

g
U(∂µU

†). (2.1.5)

The second term in A′µ is particular to local gauge transformations; for a global sym-
metry we don’t need a covariant derivative and could simply set Aµ = 0. Note also that
we can generate gluon fields out of nothing (Aµ = 0) by a local gauge transformation:
such gauge fields ∼ U(∂µU

†) are called pure gauge configurations.

Why do we actually impose local gauge invariance in the first place? In fact, only global symmetries
are true ‘symmetries’ which lead to conserved charges and quantum numbers. A local gauge symmetry
reflects a redundancy in the description, which can be seen if we turn the argument around and
start from Eq. (2.1.5), for example in the Abelian case where U(x) = eiε(x) is just a phase. The
action of a free massless vector field contains redundant degrees of freedom which are related to each
other by local gauge transformations A′µ = Aµ + ∂µε/g. The standard way to eliminate them is to
modify the Lagrangian and impose a gauge-fixing condition on the state space (cf. Sec. 2.2.3). As a
consequence, longitudinal and timelike photons decouple from physical processes and S-matrix elements
are transverse: qµMµ = 0. To preserve this feature when including interactions (e.g., when adding
fermions), the interacting part of the action must couple to a conserved current corresponding to
the global symmetry of the full action, δSint/δA

µ = jµ, which is equivalent to imposing local gauge
invariance for the matter fields. Thus, Eq. (2.1.5) is tied to the invariance under ψ′(x) = U(x)ψ(x), and
even though we needed an underlying global symmetry in the fermion sector to begin with, the local
gauge invariance is not truly a symmetry but rather a consistency constraint that generates dynamics.
In QCD, it introduces a quark-gluon interaction of the form g ψ /Aψ.
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Another way to motivate the covariant derivative is the following. We can write the ordinary
derivative as

nµ∂µψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− ψ(x)] . (2.1.6)

For a local gauge transformation ψ′(x) = U(x)ψ(x) the first term becomes U(x + εn)ψ(x + εn) but
the second U(x)ψ(x), so we are comparing objects at different spacetime points. To remedy this, we
define the parallel transporter or link variable C(y, x) by

C′(y, x) = U(y)C(y, x)U†(x) , C(x, x) = 1 , (2.1.7)

because then the quantity C(y, x)ψ(x) has a simple transformation behavior:

[C(y, x)ψ(x)]′ = U(y)C(y, x)U†(x)U(x)ψ(x) = U(y)C(y, x)ψ(x) . (2.1.8)

Now, if we define the covariant derivative as

nµDµψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− C(x+ εn, x)ψ(x)] (2.1.9)

and perform a gauge transformation, then U(x+εn) can be pulled out so that [Dµψ(x)]′ = U(x)Dµψ(x),
and thus ψ /Dψ is invariant under the local symmetry.

Moreover, we can write down the Taylor expansion of the parallel transporter:

C(x+ εn, x) = 1 + εnµigAµ(x) +O(ε2) , (2.1.10)

where igAµ is just a name for the coefficient of the linear term. Inserting this into (2.1.9) yields

nµDµψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− ψ(x)− εnµigAµ ψ(x)] = nµ∂µψ(x)− nµigAµψ(x) (2.1.11)

and therefore Dµ = ∂µ − igAµ. Similarly, the transformation of the gluon field follows from

C′(x+ εn, x) = U(x+ εn)C(x+ εn, x)U†(x)

=
[
U(x) + εnµ∂µU(x) +O(ε2)

] [
1 + εnνigAν(x) +O(ε2)

]
U†(x)

= 1 + εnµig

[
U(x)Aµ(x)U†(x)− i

g
(∂µU(x))U†(x)

]
+O(ε2)

!
= 1 + εnµigA′µ(x) +O(ε2) ,

(2.1.12)

which reproduces the result (2.1.5) since ∂µ(UU†) = (∂µU)U† + U∂µU
† = 0.

Gluon dynamics. Next, we need a kinetic term that describes the dynamics of the
gluons. To this end we define the gluon field strength tensor as the commutator of
two covariant derivatives:

Fµν(x) =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (2.1.13)

It is then also an element of the Lie algebra and we can write it as

Fµν =
∑

a

F aµν ta , (2.1.14)

where the ta are again taken in the fundamental representation because ∂µ, Dµ and Aµ
act on quark fields in the (three-dimensional) fundamental representation of SU(3)C .
Fµν inherits the transformation properties from (2.1.4): F ′µν = UFµνU

†.
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Fig. 2.1: Tree-level (inverse) propagators and interactions in the QCD action.

The contraction of two field-strength tensors is not gauge invariant; only its color
trace is invariant due to the cyclic property of the trace:

Tr
{
F ′µνF

′µν} = Tr
{
UFµνU

† UFµνU †
}

= Tr {FµνFµν} . (2.1.15)

Only the trace can therefore appear in the Lagrangian. We can write it as

Tr {FµνFµν} = F aµν F
µν
b Tr {ta tb} = T (R)F aµν F

µν
a , (2.1.16)

where T (R) = 1/2 in the fundamental representation of SU(N), cf. Appendix A. From
Eq. (2.1.5) we also conclude that a gluon mass term ∼ mg AµA

µ cannot appear in the
Lagrangian because it would violate gauge invariance: gluons must be massless.

We can work out the components of the field-strength tensor as

Fµν = F aµν ta = ∂µA
a
ν ta − ∂νAaµ ta − ig AaµAbν [ta, tb]

=
(
∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν

)
ta ,

(2.1.17)

where we used [ta, tb] = ifabc tc. Note that in an Abelian gauge theory such as QED this
commutator would vanish, leaving only the linear terms in the gluon fields. The non-
Abelian nature of SU(3)C introduces gluonic self-interactions which lead to significant
complications. Inserting Eq. (2.1.17) into the term F aµν F

µν
a and partial integration

yields

−1
4F

a
µν F

µν
a
∼= 1

2
Aaµ (2 gµν − ∂µ∂ν)Aaν

− g

2
fabc (∂µAνa − ∂νAµa)AbµA

c
ν −

g2

4
fabefcdeA

µ
a A

ν
b A

c
µA

d
ν ,

(2.1.18)

where ∼= means ‘up to surface terms in the action’, e.g. ∂µA
a
ν ∂

µAνa
∼= −Aaν 2Aνa after

partial integration. In contrast to the Abelian theory, where the F 2 term only produces
a photon propagator, we can see that in the non-Abelian case we end up with the gluon
propagator, a three-gluon interaction ∼ A3 and a four-gluon interaction ∼ A4.

Feynman rules. The terms ψ (i /D−m)ψ and −1
4F

a
µν F

µν
a in the Lagrangian allow us

to read off the Feynman rules for the tree-level correlation functions of the QFT. In
particular, the action contains the 1PI (one-particle irreducible, see Sec. 2.2.2) quanti-
ties, which means the vertices and inverse propagators that define the theory (Fig. 2.1).
The procedure is as follows: symmetrize the respective term in the action (if necessary),
transform it to momentum space, split off the integrals, fields and symmetry factors,
and multiply with i to get the Feynman rule for the propagator or vertex.



2.1 QCD Lagrangian 5

For example, the inverse quark propagator corresponds to the term ψ (i/∂−m)ψ.
The Fourier transform of the fields is

ψ(x) =

∫
d4p

(2π)4
e−ip·xψ(p) . (2.1.19)

Abbreviating
∫
p =

∫
d4p/(2π)4, the term in the action becomes

∫
d4xψ (i/∂ −m)ψ =

∫

p′

∫

p

ψ(p′) (/p−m)ψ(p)

∫
d4x ei(p

′−p)·x =

∫

p

ψ(p) (/p−m)ψ(p)

and dividing by i, the inverse tree-level propagator is

S−1
0 (p) = −i (/p−m) ⇔ S0(p) =

i (/p+m)

p2 −m2 + iε
. (2.1.20)

Likewise, the inverse gluon propagator can be read off from Eq. (2.1.18). Replac-
ing 2→ −p2 and ∂µ∂ν → −pµpν , we find

(D−1
0 )µν(p) = ip2

(
gµν − pµpν

p2

)
. (2.1.21)

The symmetry factor 1/2 does not enter in the Feynman rule. Here we encounter,
however, a difficulty: the inverse gluon propagator is proportional to a transverse
projector, which is not invertible and thus the gluon propagator does not exist. We
will cure the problem in Sec. 2.2.3 by the Faddeev-Popov method, where we follow
analogous steps as in QED and add gauge-fixing terms to the action (which will also
introduce ghost fields). Before we get there, keep in mind that the gluon propagator is
not yet well-defined.

The quark-gluon vertex comes from the term g ψ /Aψ induced by the covariant
derivative. If we denote the incoming and outgoing quark momenta by p and p′ and
the incoming gluon momentum by q, we have

∫
d4xψ g /Aψ =

∑

a

∫

p′

∫

p

∫

q

(2π)4 δ4(p′ − p− q)ψ(p′)Aaµ(q) gγµ taψ(p) ,

so the tree-level vertex is igγµ ta.
The three-gluon vertex must be fully symmetric under exchange of any two legs,

but this symmetry is not yet manifest in the A3 term of Eq. (2.1.18). To this end, we
abbreviate ∂µνρ = ∂µgνρ − ∂νgµρ and write

fabc (∂µAνa − ∂νAµa)AbµA
c
ν = fabc (∂µνρAaρ)A

b
µA

c
ν = fabcA

a
µA

b
ν (∂µνρAcρ) = . . .

In the last step we renamed the color indices and used fabc = fbca = fcab. For three
Lorentz indices there are 3! = 6 possible permutations; ∂µνρ is already antisymmetric
in µ↔ ν so we only need to add the two remaining cyclic permutations:

. . . =
1

3
fabc

[
AaµA

b
ν (∂µνρAcρ) +Aaν A

b
ρ (∂νρµAcµ) +Aaρ A

b
µ (∂ρµνAcν)

]

=
1

3
fabc

[
AaµA

b
ν (∂µνρAcρ) + (∂νρµAaµ)Abν A

c
ρ +Aaµ (∂ρµνAbν)Acρ

]
.

(2.1.22)
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In the first line we renamed the Lorentz indices and in the second line the color indices.
Now we can pull out Aaµ(p1)Abν(p2)Acρ(p3) in momentum space and the term in the
action becomes

− ig

6
fabc

∫

p1

∫

p2

∫

p3

(2π)4 δ4(p1 + p2 + p3)Aaµ(p1)Abν(p2)Acρ(p3)

×
[
(p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ

]
,

(2.1.23)

from where we read off the Feynman rule for the vertex:

Γµνρ3g,0 = gfabc

[
(p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ

]
. (2.1.24)

The symmetry factor 1/6 does again not enter, and p1+p2+p3 = 0. The resulting vertex
is Bose-symmetric, i.e., symmetric under a combined exchange of any two momenta
with corresponding Lorentz and color indices.

The same strategy applies to the four-gluon vertex from the A4 term in (2.1.18),
which is also not yet manifestly symmetric:

fabefcdeA
a
µA

b
ν A

µ
c A

ν
d = fabefcde g

µρgνσAaµA
b
ν A

c
ρA

d
σ

=
1

2
fabefcde (gµρgνσ − gνρgµσ)AaµA

b
ν A

c
ρA

d
σ .

(2.1.25)

Denoting Γµνρσ = gµρgνσ − gνρgµσ, then with four Lorentz indices there are 4! = 24
possible permutations of (µνρσ) ≡ (1234):

1234
1243
2134
2143

3412
3421
4312
4321

2314
2341
3214
3241

1423
1432
4123
4132

3124
3142
1324
1342

2431
2413
4231
4213

. (2.1.26)

The permutations in the first two columns are already covered because Γµνρσ = −Γµνσρ,

etc., so we only need to add (2314) and (3124):

fabefcdeA
a
µA

b
ν A

µ
c A

ν
d =

1

6
fabefcde

[
(gµρgνσ − gνρgµσ)AaµA

b
ν A

c
ρA

d
σ

+ (gνµgρσ − gρµgνσ)Aaν A
b
ρA

c
µA

d
σ

+ (gρνgµσ − gµνgρσ)Aaρ A
b
µA

c
ν A

d
σ

]

=
1

6
AaµA

b
ν A

c
ρA

d
σ

[
fabefcde (gµρgνσ − gνρgµσ)

+ fbcefade (gνµgρσ − gρµgνσ)

+ fcaefbde (gρνgµσ − gµνgρσ)

]
.

(2.1.27)

Together with −g2/4 from (2.1.18), the combined symmetry factor for the A4 term is
indeed 1/24. The resulting four-gluon vertex is Bose-symmetric and given by

Γµνρσ4g,0 = −ig2
[
fabefcde (gµρgνσ − gνρgµσ)

+facefbde (gµνgρσ − gνρgµσ)

+fadefcbe (gµρgνσ − gµνgρσ)
]
.

(2.1.28)
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QCD action. Putting everything together, the resulting QCD action constructed
from the fields ψ, ψ and Aµa has the most general form that is invariant under Poincaré
transformations, invariant under local gauge transformations, and renormalizable:

SQCD =

∫
d4xLQCD , LQCD = ψ(x) (i /D −M)ψ(x)− 1

4F
a
µν F

µν
a . (2.1.29)

The summation over the Dirac, color and flavor indices of the quarks is again implicit,
and we generalized the quark mass m to a quark mass matrix M = diag (m1 . . .mNf ).
Some further remarks:

� Eq. (2.1.29) also conserves charge conjugation and parity, where the charge
conjugation operation is defined by

ψ′α = ψβ Cβα , ψ′α = Cαβ ψβ , C = iγ2 γ0 (2.1.30)

and the parity transformation by

ψ′(x′) = γ0ψ(x) , ψ′(x′) = ψ(x) γ0 , x′ = (t,−x) . (2.1.31)

Since CPT is always conserved, this implies that the QCD action is also invariant
under time reversal.

� In principle, another gauge-invariant and renormalizable (but parity-violating)
term could appear in the Lagrangian, namely a topological charge density:

Q(x) =
g2

8π2
Tr
{
Fµν F̃

µν
}

with F̃µν =
1

2
εµναβFαβ , (2.1.32)

where F̃µν is the dual field strength tensor. The resulting ‘θ term’ in the Lagrangian
L + θQ(x) violates parity and would give rise to an electric dipole moment of the
neutron, whose experimental upper limit is however tiny (θ ≤ 10−10). So it would
seem that QCD does conserve parity; unfortunately, even if we started with θ = 0 in
QCD, the CP -violating weak interactions would renormalize it to θ 6= 0. There are
several possible scenarios how θ = 0 could be enforced beyond the Standard Model,
e.g. by promoting θ to a field (axions). Then again, CP must have been violated in
the early universe, because otherwise the Big Bang would have created matter and
antimatter in equal portions, which would have annihilated and resulted in a radiation
universe without matter. This leads to the strong CP problem. On the other hand,
since Q = ∂µK

µ can be written as the divergence of the Chern-Simons current Kµ,
it only contributes a surface term to the action and in principle we could discard it
(unless topological gauge field configurations play a role).

� We could have defined the gluon fields so that they absorb the coupling constant
g (i.e., by replacing A→ A/g and F → F/g). From Eqs. (2.1.13), (2.1.18) and (2.1.29)
we see that the only place in the Lagrangian where the coupling would then appear is
in front of the gluon kinetic term, as a prefactor 1/g2. This shows that the sign of g is
physically irrelevant.
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Quark masses and flavor structure. With regard to the flavor structure, we can
simply ignore the gluons since they are flavor independent. The quark-gluon interaction
is flavor-blind, and the distinction between different quarks only comes from their
masses. If the masses of all quark flavors were equal, the Lagrangian would have an
additional SU(Nf ) flavor symmetry. This is not realized in nature, where

mu ∼ md ∼ 2 . . . 6 MeV, ms ∼ 100 MeV,
mc ∼ 1.3 GeV,
mb ∼ 4.2 GeV,
mt ∼ 173 GeV.

(2.1.33)

These current-quark masses have their origin in the Higgs sector and from the
point of view of QCD they are external parameters that enter through the quark mass
matrix M = diag(m1 . . .mNf ). Because M is diagonal in flavor space, the flavor pieces

in the Lagrangian simply add up: ψMψ =
∑

f mf ψf ψf . The flavor structure of the
Lagrangian is crucial for the properties of hadrons and we will return to it in Chapter 3.

Infinitesimal gauge transformations. For later convenience it is useful to work
out the infinitesimal transformations of the fields. The covariant derivative as defined
in Eq. (2.1.3) acts on fields that transform under the fundamental representations of
SU(3)C , i.e., the group elements. When acting on elements of the algebra (those
containing the matrix generators ta, for example ε, Aµ or Fµν), we need an additional
commutator in its definition: Dµ = ∂µ − ig [Aµ, · ], or written in components:

(Dµε)
a = (∂µε− ig [Aµ, ε])

a = ∂µε
a − ig Acµ εb ifcba

= (∂µ δab − gfabcAcµ) εb = Dab
µ εb .

(2.1.34)

In the fundamental representation, the group generators are the Gell-Mann matrices;
in the adjoint representation they are given by (tc)ab = −ifabc. Inserting this into
Eq. (2.1.3), we see that Dab

µ is the covariant derivative in the adjoint representation:

(Dµ)ab = (∂µ − igAµ)ab = ∂µ δab − igAcµ (tc)ab = ∂µ δab − gfabcAcµ . (2.1.35)

In an Abelian gauge theory such as QED, the commutator vanishes and Dab
µ = ∂µ δab

is the ordinary partial derivative.
With U = 1 + iε, the infinitesimal gauge transformation of the fields is given by

ψ′ = Uψ ≈ (1 + iε)ψ ,

ψ′ = ψ U † ≈ ψ (1− iε) ,

A′µ = UAµU
† +

i

g
U(∂µU

†) ≈ Aµ + i [ε,Aµ] +
1

g
∂µε = Aµ +

1

g
Dµε ,

F ′µν = U Fµν U
† ≈ Fµν + i [ε, Fµν ] ,

(2.1.36)

from where we obtain:

δψ = iε ψ , δψ = −iψ ε , δAµ =
1

g
Dµε , δFµν = i [ε, Fµν ] . (2.1.37)
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Classical equations of motion. The classical Euler-Lagrange equations of motion
follow from the action principle:

S[φ] =

∫
d4xL(φ, ∂µφ) ⇒ δS[φ] =

∫
d4x

(
∂L
∂φ

δφ(x) +
∂L

∂(∂µφ)
δ(∂µφ)

)

=

∫
d4x

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ(x) = 0 ,

which means that the functional derivative of the action vanishes:

δS[φ]

δφ(x)
=
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 . (2.1.38)

If the action contains several fields, there is one equation of motion for each component:
δS[φ1, . . . φn]/δφi(x) = 0.

As a reminder, the functional derivative δF [φ]/δφ(x) of a functional F [φ] is defined as

F [φ+ δφ] = F [φ] + δF [φ] = F [φ] +

∞∫
−∞

dx
δF [φ]

δφ(x)
δφ(x) , (2.1.39)

where the last term is the continuum version of
∑
i(δF/δφi) δφi written for one spacetime dimension.

Here are some examples:

F [φ] F [φ+ δφ]
δF [φ]

δφ(x)∫
dxφ(x) J(x)

∫
dx (φ+ δφ) J = F [φ] +

∫
dx J δφ J(x)∫

dx f(φ(x)) J(x)
∫
dx [f(φ) + f ′(φ) δφ] J f ′(φ(x)) J(x)

∫
dx f(φ(x), φ′(x))

∫
dx
[
f(φ, φ′) + ∂f

∂φ
δφ+ ∂f

∂φ′ δφ
′
]

= F [φ] +
∫
dx
[
∂f
∂φ
− d

dx
∂f
∂φ′

]
δφ

∂f

∂φ(x)
− d

dx

∂f

∂φ′(x)

∞∫
0

dxφ(x) =
∞∫
−∞

dxφ(x) Θ(x) F [φ] +
∫
dxΘ(x) δφ(x) Θ(x)

exp
[
i
∫
dxφ(x) J(x)

] exp
[
i
∫
dx (φ(x) + δφ(x)) J(x)

]
= F [φ]

(
1 + i

∫
dx J(x) δφ(x)

) iJ(x) exp
[
i
∫
dy φ(y) J(y)

]

φ(z) =
∫
dxφ(x) δ(x− z) F [φ] +

∫
dx δφ(x) δ(x− z) δ(x− z)

f(φ(z))
f(φ(z)) + f ′(φ(z)) δφ(z)

= F [φ] +
∫
dx f ′(φ(x)) δφ(x) δ(x− z)

f ′(φ(x)) δ(x− z)

φ′(z) =
∫
dxφ′(x) δ(x− z)

= −
∫
dxφ(x) δ′(x− z)

F [φ]−
∫
dx δφ(x) δ′(x− z) −δ′(x− z)
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Let us work out the classical equations of motion of QCD defined by the Lagrangian
L = ψ

(
i/∂ + g /A−M

)
ψ − 1

4 F
a
µν F

µν
a . Although they are not directly relevant for our

purposes, they will later enter in the quantum equations of motion (Sec. 2.2.2) and
conservation laws (Sec. 3.1). If we take the derivatives of L with respect to ψ and ψ,

∂L
∂ψ

= (i /D −M)ψ ,
∂L

∂(∂µψ)
= 0 ,

∂L
∂ψ

= ψ (g /A−M) ,
∂L

∂(∂µψ)
= ψ iγµ (2.1.40)

we obtain the Dirac equations for the quark and antiquark fields:

δS

δψ
= (i /D −M)ψ = 0 ,

δS

δψ
= ψ (−i

←−
/∂ + g /A−M) = 0 . (2.1.41)

For the gluons, we first work out the derivatives of the field-strength tensor:

∂F aµν
∂Acρ

= gfabc

(
Abµ δ

ρ
ν −Abν δρµ

)
,

∂F aµν
∂(∂ρAcσ)

=
(
δρµ δ

σ
ν − δρν δσµ

)
δac . (2.1.42)

With the product rule we then obtain

∂L
∂Aaµ

= g ψ γµtaψ + gfabcA
c
ν F

µν
b ,

∂L
∂(∂νAaµ)

= Fµνa (2.1.43)

and finally
δS

δAaν
= gfabcA

c
ν F

µν
b − ∂ν Fµνa + g ψ γµtaψ = 0 . (2.1.44)

The first two terms on the r.h.s. can be combined to

− (∂ν δab − gfabcAcν)Fµνb = −Dab
ν Fµνb = −(Dν F

µν)a , (2.1.45)

whereas the last term is the vector current corresponding to the global SU(3)C trans-
formation: Jµa = ψ γµtaψ. Then the quantity Jµ =

∑
a J

µ
a ta lives in the Lie algebra

and Eq. (2.1.44) becomes
Dν F

µν = g Jµ . (2.1.46)

These are the classical Yang-Mills equations for the gluon field, i.e., the Maxwell
equations in the non-Abelian theory. They are the direct generalization from electro-
dynamics, where the covariant derivative in the adjoint representation would reduce to
the ordinary derivative.

It is not too much of a stretch to ask whether there is also a generalization of the
Maxwell equation for the dual field strength tensor F̃µν . Indeed we find

Dν F̃
µν = 1

2 ε
µναβ Dν Fαβ

= 1
6

(
εµναβ + εµαβν + εµβνα

)
Dν Fαβ

= 1
6 ε

µναβ (Dν Fαβ +Dα Fβν +Dβ Fνα) = 0 ,

(2.1.47)

where the parenthesis vanishes due to the Bianchi identity, which follows from the
Jacobi identity for the generators, Eq. (A.1.3). Similarly, one can establish covariant
current conservation DµJ

µ = 0 for the solutions of the equations of motion.


