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Chapter 1

Outline

Quantum chromodynamics (QCD) is the quantum field theory of the strong interac-
tion, with quarks and gluons being its elementary degrees of freedom. Nevertheless
only color-neutral hadrons as bound states of quarks and gluons appear as observable
particles in detector facilities, and a detailed study of hadron properties is of fundamen-
tal importance for an understanding of the quark-gluon dynamics of QCD. A wealth of
information has been collected in the past decades’ high-energy scattering experiments
but many issues are still unresolved. Present and future experimental programs at
JLAB, SLAC, COMPASS/CERN and FAIR/GSI are devoted to charmed meson and
baryon spectroscopy, the search for exotic mesons, or the investigation of the nucleon’s
electromagnetic and spin structure in terms of form factors and generalized parton
distributions.

The interplay between QCD’s elementary and observable degrees of freedom ad-
dresses two phenomena whose origin is not yet fully understood: color confinement
and dynamical chiral symmetry breaking. The latter is the mass generation mecha-
nism that equips light quarks with large dynamical constituent-quark masses whereas
it retains the light pseudoscalar mesons as would-be Goldstone bosons of spontaneously
broken chiral symmetry. While QCD is well under control in the high-energy region
whose weak coupling strength enables the application of perturbative methods, these
phenomena characterize the large-distance or low-energy structure of QCD where the
coupling is strong and demands a non-perturbative treatment.

Many approaches which describe particular aspects of QCD have emerged in the
past decades. For instance, quark models have pioneered our understanding of hadron
structure and successfully described many of their properties, see e.g. [1-5]; effective
field theories provide rigorous results in certain limits, e.g. [6-11]; experimentally ex-
tracted generalized parton distributions (GPDs) combine electromagnetic form factors
and parton distribution functions and establish a three-dimensional tomography of
hadrons, see [12-14] for recent reviews. Each has its own strengths but also weak-
nesses, e.g., parameter dependence, limited range of applicability, or the reliance upon
a factorization scale.
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The long-term goal of rigorously solving QCD necessitates a quantum-field theo-
retical, non-perturbative description starting directly from the QCD Lagrangian as a
prerequisite. Lattice QCD is constantly pushing forward towards the physical quark
mass in its investigation of hadron structure [15,16]. On the other hand, the increase
of computational power in the past decade has also played a vital role in the devel-
opment of functional continuum methods: the Dyson-Schwinger equations (DSEs) of
QCD provide a tool to map out the infrared structure of QCD where confinement
and dynamical chiral symmetry breaking occur; non-perturbative bound-state equa-
tions have been utilized to perform hadron spectroscopy and thereby determine the
meson and baryon amplitudes that are needed to calculate hadronic observables such
as electromagnetic form factors and decay properties. For reviews on Dyson-Schwinger
equations and their application to hadron physics, see e.g. Refs. [17-21].

Functional methods are in some sense complementary to lattice QCD. While access
to the full momentum region and quark-mass range is readily available without any
need for extrapolations, one faces an infinite system of integral equations which needs
to be truncated with regard to a practical numerical computation. Such truncations,
while subject to specific constraints, induce a model dependence which is not easily
quantified. Lattice calculations and their chiral extrapolations are not only useful
for comparing results but can also serve as a guideline to construct truncations which
capture the important physics. Much of the current effort is focused on further resolving
the dynamics of quarks and gluons from their DSEs and elevate simplistic truncations
towards a more complete picture of the involved physical content. An exploration of
the full potential contained in such functional approaches has only begun, and the
future holds many exciting perspectives: from a phenomenologist’s point of view, some
of the intermediate goals are access to charm and bottom physics, the investigation of
excited hadrons, electromagnetic form factors in the timelike region, or the medium-
and large-Q? domain of spacelike form factors.

The aim of this thesis is to report progress that has been achieved in the framework of
meson and baryon bound-state equations and thereby contributes to an understanding
of the dynamics of hadrons from their underlying constituents. After recapitulating
basic concepts in QCD and the bound-state formalism in Chapter 2, we provide a
systematic study of quark-antiquark (Chapter 3), three-quark (Chapter 4), diquark
and quark-diquark bound states (Chapter 5). The common parenthesis is provided
by a rainbow-ladder (RL) truncation, i.e. an iterated vector-vector gluon exchange in
the qq kernel, which guarantees the correct implementation of chiral symmetry and its
spontaneous breaking and is elaborated in Chapter 3. In the ¢ sector we report results
for m and p-meson observables; the three-body equation is solved for the nucleon, and
the quark-diquark approach is applied to N and A baryons. In Chapter 6 we present
results for the nucleon’s electromagnetic form factors in the quark-diquark framework.
In Chapter 7 we summarize and conclude.

Calculational details, as well as details on the structure of Green functions and
bound-state amplitudes that appear throughout the text, are collected in Appendices A
and B. We work in the Euclidean formulation (corresponding relations are given in
App.B.1) and restrict ourselves to two-flavor QCD with isospin symmetry.



Chapter 2

Bound states in QCD

The dynamical content of QCD as a local quantum field theory of quarks and gluons
is described by its Lagrangian or, equivalently, its action. It is a difficult task to
unfold the physical content of the QCD Lagrangian toward a quantum-field theoretical
description of hadrons. At large energies and small distances (the "ultraviolet’ region),
the interaction between quarks and gluons is weak and can be described by perturbative
methods. At low energies and large distances (the ’infrared’), the coupling becomes
strong and perturbation theory can no longer explain the most striking features of QCD
in this regime: the dynamical breaking of chiral symmetry (DxSB), the generation of
large constituent-quark masses from almost massless quarks, the formation of hadrons
— mesons as quark-antiquark and baryons as three-quark bound states —, and the
confinement of quarks and gluons inside hadrons.

A rigorous starting point to describe the non-perturbative dynamics of quarks and
gluons is the path-integral approach. Dyson-Schwinger equations (DSEs) are the quan-
tum equations of motion. They relate QCD’s Green functions — the basic propagators
and vertices of the theory, e.g. the dressed quark and gluon propagators, and the
quark-gluon vertex — to each other and lead to a self-consistent and infinitely coupled
system of integral equations.

Hadrons appear as free-particle poles in the respective n-particle Green functions.
For instance, the quark-antiquark and three-quark Green functions exhibit meson and
baryon poles, respectively. Hadron properties can be extracted upon solving bound-
state equations which are valid at these poles and need the Green-function content of
QCD as an input. In combination they provide a powerful tool to calculate experi-
mentally accessible hadron observables, e.g. meson and baryon mass spectra, decay
constants, scattering processes, and electromagnetic properties such as form factors,
magnetic moments and charge radii.

In the present chapter we briefly introduce the theoretical foundation and phe-
nomenological aspects of QCD. Starting from its generating functional, we sketch the
derivation of Dyson-Schwinger equations, discuss confinement and DySB and their
manifestation in the bound-state approach, and derive the general form of a bound-
state equation which will be referred to in the following chapters.



8 Bound states in QCD

2.1 Basic concepts in QCD

QCD action. Based upon the principle of local gauge invariance, the QCD action
which describes the interaction of quark and gluon fields ¢, ¢, A, is written as

Sacold, 4.9 = [dlo [5(-p+myv+ LRy FL). (21)

where D, = 0, + igA, is the covariant derivative and the gluon field-strength tensor
reads F,, = 0,A, —0,A, +1ig[A,, Ay]. The action is per construction invariant along
the gauge orbit

WUy,  AU=UAU - g U@.Uh, FL=UFU", (22

where U(z) € SU(3)c is a local gauge transformation and A, = A} t?, F,, = Fj, t°
are elements of the corresponding color algebra whose basis elements t*, ¢ = 1...8
satisfy the commutator relation [t%,¢*] = if®°t¢. In the fundamental representation
they are given by the Gell-Mann matrices t* = A*/2.

The non-Abelian nature of the color group SU(3)c induces gluonic self-interaction
terms ~ A3 and ~ A% encoded in F, v Which lead to significant complications compared
to the Abelian gauge theory QED. They are commonly believed to be the origin of
phenomena such as confinement and dynamical chiral symmetry breaking in QCD.

Generating functional. In an Euclidean path-integral approach, the quantum field
theory which corresponds to the action (2.1) is defined by the generating functional

Z[J7 777 ﬁ’ U? 6.] = /D[A7 ¢7 'IE? C? E:I € B SQCD [A7¢71ZJ] B SGF[A’C7E] * SC (2'3)

from which all physical quantities can be derived. An integration over infinitely many
physically equivalent gauge field configurations AY, and the emergence of zero eigen-
values of the perturbative inverse gluon propagator as obtained from (2.1), are avoided
by adding the gauge-fixing term

(9. 45)

2¢
to the classical action'. It introduces unphysical auxiliary fields, the scalar anticom-
muting ghost fields ¢ and ¢, where D% = 5‘”’8# +g f“bcAfi is the covariant derivative in
the adjoint representation. The expression (2.4) arises from evaluating the gauge-fixing
condition §(9,Af, — {B)det M[A] in the path integral which involves the determinant
of the Faddeev-Popov operator

Sar[A, c,¢] = / dix [ + (9u") (D50 (2.4)

1

M[A1" (@, y) = =0uDy ' (z —y) . (2.5)

! Gauge fixing is not necessary for a direct calculation of gauge-independent quantities via Eq. (2.7)
as is for instance routinely done in lattice QCD.
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The source term
R - A
Sc—/dx[AZJﬁ—l—nw—i-wn—l—ac—i-ca (2.6)

contains the external currents which are auxiliary quantities to enable the derivation
of Green functions in terms of functional derivatives of Z.

Green functions. All physical properties can be extracted from the Green functions
of a quantum field theory, and the theory is solved once all of them are determined.
Abbreviating the fields generically by ¢(x) and the associated sources by J(x), the
Green functions are defined as the time-ordered vacuum expectation values of products
of fields, denoted by Gg]:

Do WGl T4 Z|J]

(Glel) = (017 G811 0) = =T ol FEe e

For instance, a two-point function is associated with G[y] = ¢(x)p(y). In the functional
formulation the Green functions correspond to averages over all field configurations with
a probability distribution e~5¥l. As indicated in (2.7), they are most conveniently
obtained as moments of the generating functional Z|[.J] by taking functional derivatives
with respect to the sources J. The same procedure yields connected Green functions
as derivatives of the functional W[J] := —In Z[J] and one-particle irreducible (1PI)
Green functions from the effective action I'[@] which is related to W[J] via a Legendre
transformation:

2] = e W = / Dipe=Slel+/e@ J(@) _, (~TE+[3@) J(@) (2.8)

The averaged field ¢ is the expectation value of ¢ in the presence of the source J:

SWI[J] _ [Dy e~ Sl (@) J(@) (1) _

T [Dpe e emam el =gl (2:9)
With the following shorthand notation for functional derivatives:
oW |[J or
W"[0]zy L] I7[0]4y = _orlel (2.10)

T I (@) 0 () | T 50(w) 03(y) | g

the propagator associated with the field ¢ is given by I'"'[0] ;yl, the respective three-point
vertex is I'"'[0]gy-, etc. 1PI vertices involving different types of fields are obtained upon

differentiating with respect to each corresponding variable @;(x).

Dyson-Schwinger equations. Dyson-Schwinger equations [22,23] are the quantum
equations of motion. They follow from an invariance of the generating functional under
a variation p(z) — @(z) + €(x) of the fields. Assuming that the integral measure is
invariant under such a transformation, the condition Z’'[.J] = Z[J] leads to the relation

<§<i([i]) >J = gfi [&](zx)] 2] = J(@) (2.11)
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for each field ¢ that appears in the action. This is the defining relation for the infinite
tower of Dyson-Schwinger equations which relate the Green functions of the field theory
to each other. Inserting Z[J] = e~ W1 yields the corresponding equation for connected
Green functions:

S , § e
5¢ |: Wl J]e + 5J(w)] 1=J(z). (2.12)
With W'[J], = —¢(=), I'[@]e = J(z), and
o [dply & ) ,,
0 J(z) ; §J(x) dp(y) y/W ey 5 y/F ﬂﬂ?y 5 (y)’ (2.13)

one arrives at the generating DSE for 1PI Green functions:

'@ = ‘15 3(z) + / (75}

Y

J

50 1. (2.14)

Further (n — 1)-fold differentiation and finally setting ¢ = 0 yields the system of DSEs?
for the 1PI n-point functions I'(™ 0]21,..2n

Dyson-Schwinger equations in QCD. In the context of QCD, the action whose
functional derivative appears in Egs. (2.11-2.14) is the sum of the classical action and
the gauge-fixing contribution (2.4). Dyson-Schwinger equations for 1PI Green functions
are obtained via functional derivatives of Eq.(2.14) with respect to the gluon, quark
or ghost fields A, 1, 1, ¢ and &, where the latter four are anticommuting Grassmann
variables. A detailed derivation of these relations can be found in Refs. [17,18,25].
The DSEs for quark, gluon and ghost propagators and quark-gluon and ghost-gluon
vertices are illustrated in Fig. 2.1.

The Dyson-Schwinger approach provides an appealing tool for several reasons. DSEs
operate in fully relativistic quantum field theory; they provide access to both perturba-
tive and non-perturbative regimes of QCD; and they represent a continuum approach
which is able to cover the full quark-mass range between chiral limit and the heavy-
quark domain. Of course the main caveat concerns the complexity of this framework:
for numerical studies one relies upon a truncation of the infinite systems of equations to
a subset that captures the physical content and is solved explicitly, combined with the
use of anséatze for those Green functions that enter the equations but are not solved for.
These ansétze are constrained by symmetry properties, multiplicative renormalizability,
perturbative limits, etc. During the past years a cross-fertilization between functional
methods and lattice QCD has provided further insight into the non-perturbative struc-
ture of Green functions.

2A Mathematica package which enables an automated derivation of DSEs is described in Ref. [24].
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Quark propagator: Gluon propagator:

- - -1 -1
_0_1: T ﬂ WO = T +
/’/O\\
Ghost propagator: + Quw + WQW
o
o‘“.”'c

-1 -1
____O____. = + O____ -

Ghost-gluon vertex:

Quark-gluon vertex:

SN

+

FicUure 2.1: DSEs for quark, gluon and ghost propagators and the ghost-gluon and
quark-gluon vertices. White blobs denote dressed propagators, filled blobs represent
1PI Green functions.

Gauge invariance. While Green functions depend on the gauge, physical observ-
ables must be gauge independent. Similarly as the classical equations of motion are
implemented in the functional description through equations for the 1PI vertices, the
requirement of gauge invariance of the generating functional leads to Ward-Takahashi
(WTIs) and Slavnov-Taylor identities (STIs) which interrelate the Green functions of
a gauge theory. Although the gauge-fixed action of QCD is no longer invariant with
respect to local gauge transformations, it still satisfies global gauge symmetry and
BRST symmetry [26,27]. The latter is formally equivalent to a gauge transformation
by a ghost field and can be used to derive the STIs. Moreover it can be shown that
requiring BRST invariance of a gauge theory generates both the ghosts and the gauge
fixing while ensuring gauge independence of physical observables [28].
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2.2 Phenomenological aspects of QCD

Confinement. The absence of colored states in the physical spectrum is one of the
most characteristic non-perturbative phenomena in QCD, and its underlying mecha-
nism is still not fully understood. Several different ideas have emerged which are likely
to explain different aspects of confinement; for reviews, see Refs. [18,21,29-32]. A
common line of thought builds upon the idea of certain topological gauge field con-
figurations dominating the path integral near the Gribov horizon which corresponds
to a vanishing eigenvalue of the Faddeev-Popov operator [33]. This entails a linearly
rising quark-antiquark potential in Coulomb gauge [34-39] and a strongly infrared-
divergent ghost propagator and infrared-vanishing gluon propagator in Landau gauge
which trigger the infrared behavior of other Landau-gauge Green functions [40—42].

A somewhat different point of view concerns the identification of physical subspaces
from the asymptotic state space of QCD. The Kugo-Ojima scenario [43] which relies
on BRST symmetry describes the cancellation of longitudinal and timelike gluons with
ghost and antighost fields similar to the Gupta-Bleuler mechanism in QED. On the
other hand, the Osterwalder-Schrader axiom of reflection positivity [44] implies that a
certain degree of freedom whose propagator violates positivity and thereby prevents a
Lehmann representation cannot describe an asymptotic physical state.

The manifestation of confinement in the bound-state framework is elusive. In the
particular approach employed in this work, ansatze are employed for the gluon prop-
agator and quark-gluon vertex such that, out of the coupled system of DSEs, the
quark propagator is the only Green function which is explicitly solved for. While a
rainbow-ladder truncation indeed induces complex conjugate poles which ensure posi-
tivity violation and describe a confined quark, this result is truncation dependent and
sensitive to the structure of the quark-gluon vertex [45,46].

On the other hand, the solution of the quark DSE is insensitive to the precise shape
of the interaction in the deep infrared region since the self-energy integral is dominated
by momenta larger than the quark mass. As a consequence, the impact of infrared
physics upon hadronic ground states is at best modest. It should certainly become
important in the context of highly excited states with a large spatial extension or
small-z physics.

Dynamical chiral symmetry breaking and bound states. A phenomenon which
has a direct impact upon the spectra of light hadrons is the spontaneous breaking of
chiral symmetry. An unbroken chiral SUL(Ny) x SUr(Ny) symmetry, realized in the
massless QCD Lagrangian, would imply mass-degenerate meson parity doublets in the
chiral limit whose remnants should be visible in nature. The surprisingly small mass
of the pion compared to its parity partners indicates that chiral symmetry is broken
spontaneously, and the pion is identified as the massless Goldstone boson of the two-
flavor case in the chiral limit of massless quarks. It acquires a small mass due to the
explicit breaking of chiral symmetry at small non-zero current-quark masses, a behavior
which is described by the Gell-Mann-Oakes-Renner (GMOR) relation [47].
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An order parameter of chiral symmetry breaking is the scalar quark condensate. It
modifies the structure of the QCD vacuum and, through its interaction with the quarks,
equips them with a large dynamical constituent mass. This behavior is reflected in the
quark mass function M (p?) that appears in the dressed quark propagator: it connects
the perturbative ultraviolet momentum region with the nonperturbative infrared and
thereby communicates the transition from a current quark to a dynamically generated
‘constituent quark’. Since quarks are the building blocks of hadrons, the masses of
light mesons and baryons are generated dynamically as well. DxSB therefore offers an
explanation for the quark mass-generation mechanism, and it illustrates why the simple
constituent-quark reckoning muteson ~ 2 M (0), MBaryon ~ 3 M (0) works reasonably well
except for the light pseudoscalar mesons.

DxSB becomes manifest not only in the quark propagator but also in the quark-
gluon vertex whose scalar Dirac structures are dynamically generated together with
the quark mass function [42]. Such an effect is naturally missing upon employing the
rainbow-ladder truncation. Here the quark-gluon coupling «(k?) associated with a bare
vertex enters the quark DSE as a parametrization including a scale Ay as its input
(Sections 3.2 and 3.3). A non-zero quark mass function in the chiral limit only occurs
if the coupling exhibits enough strength in the infrared. Above a critical threshold, Aig
is directly proportional to all mass-dimensionful quantities in the chiral limit, hence all
of them represent a ’scale of DySB’.

Pion cloud. It is a longstanding prediction that, induced by DySB, the low-energy
and low quark-mass behavior of hadrons is modified by their interaction with pseu-
doscalar mesons, i.e. the long-range part of gg correlations. Established in the cloudy
bag model [48-50], where the pion field is coupled to a constituent-quark bag [51],
meson-cloud effects have been studied in a number of quark models, e.g. [3,52-56].
They are systematically implemented in chiral effective field theories [6,57] which, in
combination with lattice simulations, provide an efficient tool for describing masses and
electromagnetic properties of hadrons [8,58,59].

In these frameworks hadrons consist of a 'quark core’ that is augmented by a pseu-
doscalar meson cloud which mediates a stronger binding, decreases the hadron’s mass
and increases its size. Chiral effective field theories combined with lattice techniques
typically predict a reduction of 20 — 30% for dynamically generated hadron masses by
chiral corrections, an effect which is suppressed with increasing distance from the chiral
limit.

In the covariant bound-state approach used herein, the freedom of choosing a current-
mass dependent rainbow-ladder coupling strength can be exploited to construct a
hadronic quark core which subsequently needs to be dressed by meson-cloud effects [60].
Following up on previous quark-diquark model investigations [61-63], we will frequently
present results in such a ’core model’ and compare to those of chirally extrapolated
lattice calculations. A natural extension is the explicit implementation of pionic ef-
fects in the covariant bound-state equations; corresponding results have been recently
reported [64].
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2.3 Bound-state equations

T-matrix and scattering kernel. As bound states of valence quarks, hadrons cor-
respond to poles in the quark 4- or 6-point functions G and G®) or, equivalently, in
their amputated connected parts, the scattering matrices T2 and T®) defined via

G =g 4 g, (2.15)

where GE)”) is the product of n dressed quark propagators 5;. We dropped all Dirac,
color and flavor indices of each quark leg in the above quantities for brevity. The
product in Eq. (2.15) is understood as a summation over all occurring indices as well
as integration over all internal momenta. The full notation is given at the end of this
section.

The n-quark T-matrix is related to the n-quark scattering kernel K (n > 2) by a
non-perturbative Dyson sum. In the context of bound-state equations one frequently
encounters renormalization-group invariant combinations of 7 or K" with n quark
propagator legs attached on their right-hand sides. Denoting them by

70 .= 1GM - K0 .= gtglm, (2.16)
the defining relations for the scattering kernels K™ read
T = KM 4 KWERE® 4 g g0 gt (2.17)

which may be rephrased as an integral equation, namely Dyson’s equation (also referred
to as inhomogeneous BSE) for the T-matrix:

T — g0 (1 + T‘")) = (1 + T‘")) K™ (2.18)

This equation provides the central foundation of the approach and is depicted in the
upper part of Fig. 2.2. It allows for a derivation of bound-state equations for gq, qq
and gqq systems together with their canonical normalization conditions, cf. Eq. (2.23).
Moreover, it is of virtue when constructing an off-shell ansatz for the 2-quark T-matrix
(App. A.4), and we will resort to Eq.(2.18) for deriving an electromagnetic current
operator (Section 6.1). Schematically, its inverse form reads:

(T(”))_lz(K("))_l—G(()") — (T("))_1:<I~((”)>_1—1. (2.19)

The scattering kernels K () consist of l-quark irreducible components, with | =

2...n. For instance, the three-body kernel K®) which appears in the bound-state
)

equation of a baryon is the sum of a 3-quark irreducible contribution Kl(r?; and three
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. — — K

FIGURE 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels Kl@) ® S; ! [65-67]. With the notation of (2.16), the kernel
K®) reads

= K® 4 Z K?, (2.20)

rr
where the subscript i identifies the spectator quark. K® is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M,
bound-state amplitudes ¥ are introduced as the residues of the scattering matrix via

P2 M2 A
NP2 TR (2.21)

7™

where P is the total momentum of the n quarks. The possibly dimensionful constant

N accounts for the dimensionality of 7" and depends on the spin of the resulting

particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

1 —1i M AL (P

iPAM o A(P)

J=0: 05—, J=121 —(F— 5 = :
/2 P2 4 M? P2 4 M?

2.22
P21 M2 (2.22)

For a scalar or pseudoscalar particle: N’ = 1. In the spin-1/2 case, the matrix-valued
amplitude ¥ includes the positive-energy projector A (P) = (1 + JP)/2 (cf. Section 4),
where P denotes the normalized total momentum; this yields N = 2M.

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P? = —M?, cf.
Fig. 2.2. An examination of the relation 7" = —T (T~!)'T at the bound-state pole,
where / denotes the derivative d/dP?, yields the associated canonical normalization
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+ + +

FIGURE 2.3: Three-quark kernel K® of Eq. (2.20).

condition. Their combination completely determines the amplitudes ¥ on the mass
shell:

_ _ d -1
n = () —
v=KMw,  (2.23) T [Ndzﬂ (7) ] T=1.  (2.24)

Eq. (2.23) is a fully relativistic linear homogeneous integral equation. It is the Bethe-
Salpeter equation in the two-body case (n = 2) and its quantum-field theoretical ana-
logue for a three-body system (n = 3). Its solution necessitates knowledge of the quark
propagator S; and the kernel K(". Both ingredients can in principle be obtained
from the infinite coupled set of Dyson-Schwinger equations, cf. Section 2.2. Feasible
present-day numerical DSE solutions include 2- and 3-point functions within certain
truncations, but the complexity of DSEs for 4-point functions has so far prevented a
direct numerical approach.

The construction of appropriate kernels is restricted by the underlying symme-
tries of the theory. Symmetries in quantum-field theory are implemented by Ward-
Takahashi (WTIs) and Slavnov-Taylor identities (STIs) which relate different n-point
functions to each other. A prominent example is the axial-vector Ward-Takahashi iden-
tity (AVWTI) [68] which relates the two-quark kernel K(?) to the kernel of the quark
DSE. It is imperative to satisfy these identities in the truncation used in a numeri-
cal study, and it will be the guiding principle which motivates an application of the
rainbow-ladder truncation in Section 3.1.

The bound-state approach as an eigenvalue problem. The linear homogeneous
integral equation (2.23) can be viewed as an eigenvalue problem for the kernel K (™):

EM(P?)W; = )\ (P?) ¥; (2.25)

where P is the total momentum of the n-quark bound state and enters the equation as
an external parameter. Upon projection onto given quantum numbers, the eigenvalues
of K™ constitute the trajectories A;(P2). An intersection \;(P?) = 1 at some value
P? = —M? reproduces Eq. (2.23) and corresponds to a potential physical state® with
mass M;.

3 In this context one has to keep in mind the possibility of anomalous states in the excitation spectra,
of BSE solutions, see e.g. [69].
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To enable an iterative solution, the spectrum of K™ must be bounded. The largest
eigenvalue \g of K™ represents the ground state of the quantum numbers under con-
sideration and the remaining ones \;>; its excitations; the associated eigenvectors ¥;
are the bound-state amplitudes. A repeated multiplication by itself is equivalent to a
projection onto the largest eigenvalue A, i.e., the ground state. Solving for the first
excited state involves a subtraction of the ground-state contribution from the kernel.
Hence the ¥, are obtained upon applying the projectors

K™ K — 20| wo)(To[) ]
Py = lim [K ] . Pri= lim ( ) . (2.26)

N 0 m—oo A1 ’

m—0o0

onto a general amplitude W. As an alternative, one may identify the ground state and
excited states from their poles in the off-shell vertex whose quantum numbers coincide
with those of the bound-state amplitude. This is realized by solving an inhomogeneous
Bethe-Salpeter equation for the respective vertex [68,70,71].

Solution strategy. In this thesis we will merely be concerned with ground states.
To solve Eq. (2.23), one must specify the color, flavor and spin structure of the bound-
state amplitude under investigation. The latter is constructed to be Poincaré covariant
and expressed through a certain number of matrix-valued Dirac amplitudes 7; which
incorporate all involved momenta. The respective dressing functions depend on the
Lorentz-invariant scalar products of these momenta. For instance, a two-body ampli-
tude can be characterized by a relative momentum p and a total on-shell momentum P:

U(p,P) =Y _ fi(p*,p- P,P*)7i(p,P) ® Color ® Flavor. (2.27)

Projecting the bound-state equation onto its color and flavor quantum numbers and
the orthogonal Dirac basis results in coupled integral equations for the components f;.

According to Eq. (2.25), the equation can be solved via iteration within a ’guess
range’ P? € {—M2. , —M?2,.}, where My is determined from the singularity struc-
ture of the equation’s ingredients, for instance the quark propagator (see App. B.3).
The eigenvalue A\(—M?) = 1 determines the bound-state mass M. These procedures
are explained in detail, e.g., in [72] in the context of a quark-diquark Bethe-Salpeter
equation.

The current-quark mass is an input to the quark DSE, cf. Section 3.1, and can be
mapped onto the pion mass upon solving the pseudoscalar meson BSE. This allows for
a determination of all subsequent results as a function of m2, where the physical point
is characterized by m, = 138 MeV. Varying the current mass, and thus the pion mass,
enables a direct comparison to lattice data and their chiral extrapolations.

Remarks on the notation. In the current section we have dropped almost all po-
tential occurrences of notational inconvenience, a strategy which we will continue to
pursue when deriving formal relations. In this formal notation, internal loop integrals,
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summations or four-dimensional delta functions are not retained; possible color-flavor
prefactors or symmetrization factors are not considered either. They will be stated in
subsequent chapters when the expressions are explicitly evaluated.

Consider for example the quark 6-point function G®): is defined as the vacuum
expectation value of time-ordered quark and antiquark field operators,

3
G®) (@1, T2, T3, Y1, Y2, Y3)ar azas; 81 820 = (O] TH Ga; (i) g, (4i) 10) (2.28)
=1

where the Euclidean momentum-space representation is given by

(2m)*6* (2, (ki — pi)) G¥ (K1, - P3)a..y =
3
= H / d*z; /d4yi etkizi=pii) G0G) (1,3 Y3)ay..Bs -
=1

Greek subscripts collect Dirac, color and flavor indices of the quark legs. A é-function
was extracted in the Fourier transform due to translation invariance and thus total
momentum conservation. The dressed propagator of a single quark ¢ is given by

(2.29)

(2m)4 6% (ki — pi) S (ki)ap = / d*z; / dty; et Freimpiv) GO (g5 40) 05 (2.30)

such that GSB’), the disconnected product of three single propagators, is written as

3
3
(@m)*5* (ki = pi)) GG (ks P3)anse = [[(2m) 04 (ki = pi) S(kidass, - (2:31)
i=1
By virtue of the delta functions, the 6-point function effectively depends on 5 momenta,
the quark propagator on 1 momentum and the three-propagator product on 3 momenta.
In the three-body case, the pole assumption (2.21) is written as:

P2 M2 \I/ kl,kg,kg \IJ D1, P2, P3
T(3)(k17 e D3)ar. By ——— 2M ( )m;;aj_ ]\(42 )B1825 :

(2.32)
where the three-quark ’wave function’” ® := GSB)\I/ corresponding to the three-quark

amplitude W is defined to be the transition matrix element between the vacuum and
the bound state with momentum P = ). p; = > . k;:

2m)*6* (X, pi — P) ®(p1, P2, P3)aranas =

3
=L [ e Olatene, o ateslos Py
=1

The products in, e.g., Eq.(2.15) are understood as summations over all occurring
indices as well as integrations over all internal momenta. For instance, the expression
appearing in Eq. (2.17),

KOR® = kOGP KE G (2.34)
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involves nine 4-dimensional integrations in the first place. Since aside from total mo-
mentum conservation also the total momenta of K®) and G(()g) are conserved on their
own, the original nine integrals are reduced to six. Four of those are canceled by the
two delta functions in every occurrence of G(()3) , such that two integrals (thus integra-
tion over 8 real variables) according to the two internal loop momenta remain in the

final expression.



Chapter 3

Mesons

The simplest bound states in QCD are those composed of a quark and an antiquark.
The corresponding Bethe-Salpeter equation has been formulated in [73] and relies upon
non-perturbative expressions for the involved quark propagator and gq kernel. First
reliable numerical solutions were obtained in the context of a rainbow-ladder truncation
[74-78], i.e. an iterated vector-vector gluon exchange between quark and antiquark,
which has become a standard approach since then.

A variety of results related to meson spectroscopy [70,78-81], electromagnetic prop-
erties [82-86], decays [82,87,88] and scattering processes [89,90] have been reported in
such a setup; see Refs. [19,91] for an overview. The overall tendencies may be summa-
rized as: (isovector) pseudoscalar and vector-meson ground state properties agree well
with experiment starting from the chiral limit up to the bottom quark; radial excita-
tions are sensitive to the model parameters in the interaction; axial-vector mesons are
too light compared to experimental data.

The apparent reason for the popularity of rainbow-ladder is tied to its nature of
being the simplest truncation of the ¢ kernel that implements the correct scheme of
chiral symmetry and its spontaneous breaking. Quark-antiquark interactions beyond a
simple gluon exchange must be consistent with the truncation of the quark propagator
to maintain the GMOR relation for the pion. Efforts to go beyond rainbow-ladder
have been made, and are underway, but typically suffer from a drastic amplification in
complexity. Phenomenologically important corrections beyond RL involve pseudoscalar
meson-cloud effects: the attractive nature of the pion cloud should induce a sizeable
decrease in the vector-meson mass toward the chiral limit and similarly affect related
observables.

In the current chapter we introduce the basic relations which will frequently be
referred to in subsequent parts of this thesis. Those are: the quark DSE, meson BSE,
and the effective coupling a(k?) which provides the common link in our studies of
qq, 99, qqq and q(qq) systems. We will investigate the properties of pseudoscalar and
vector mesons using different inputs for the effective coupling, compare their current-
mass evolution to lattice data, discuss pionic corrections, and extract simple relations
which can be used to describe the results.
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3.1 Quark DSE and meson BSE

Quark propagator. The basic quantity which appears in any of the bound-state
equations (2.23) is the renormalized dressed quark propagator S(p, i1). It consists of two
dressing functions o, and o, which correspond to a general fermion propagator’s vector
and scalar Lorentz structures. They can be expressed via the quark renormalization
function Z; and the quark mass function M, where the latter is independent of the
renormalization point u:

Z(p* 1)
Another frequently used notation involves the functions A(p?, u?) = 1/Z¢(p?, u?) and
B(p? p*) = M(p*)/Z; (0, 11?).

These dressing functions represent the solution of the quark Dyson-Schwinger equa-
tion, also known as the QCD gap equation (see Fig. 3.1)

ST (p, p) = Zo(p?, A?) (ip + mo(A?)) + S(p, p, A) (3.2)

where Zy(u?,A%) = A(p? = A%, i?) is the quark renormalization constant and A an
ultra-violet regularization scale. mg is the cutoff-dependent bare current-quark mass.
The quark self-energy ¥ is defined via

S(p, p) = —ipou(p?, 1*) + os(p?, p*) = (—ip+M©p*)) - (3.1)

A

4 2 N v v
Do) = =5 Zur (8, 8%) [ 99 (a0 DY) k) s (33)

q

where the prefactor (NZ — 1)/(2N¢) = 4/3 stems from the color trace. X involves
the gluon propagator D’ with gluon momentum k& = ¢ — p, and a bare (g Z1p iv")
and dressed (gI'*) quark-gluon vertex with renormalization constant Z;p, where we
introduced the average momentum ! = (¢+p)/2. These Green functions either need to
be known a priori or determined in the course of a self-consistent solution of the DSEs
of the quark and gluon propagators together with the quark-gluon vertex.

Technical details of the solution of Eq.(3.2) are sketched in App.A.1. We note
that the current-quark mass dependence which appears in Eq.(3.2) in terms of the
bare mass mg(A) can alternatively be expressed via the mass function M (u?) at the
renormalization point through Eq. (A.9). The asymptotic form of M(p?) is given in
Eq. (A.3) and defines the renormalization-point independent current mass m. Given
a sufficiently large renormalization point g, 7 can be determined from M (u?) via
one-loop evolution, cf. Eq. (A.5), whereas in the chiral limit: 7 = 0.

Gluon propagator and quark-gluon vertex. The dressed gluon propagator, char-
acterized by a dressing function Z, is in Landau gauge transverse to the gluon momen-
tum k=g —p:

20k, ) Rk

D (kyp) = =5 T, T =" — =3

(3.4)
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F1cure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

4
FM(L k7 :u’) = Z (fz(l)zfyu + fz(2)lu + f2(3)kaﬂ> Ti(l7 k) ’ (35)

i=1

where the fi(j )(ZQ, l-k,k?, pu?) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

mi(l k) ={1L, K, [, [}, K} - (3.6)

The four longitudinal basis elements ~ k* do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants iy*
and [* are referred to as the vector and scalar components, respectively.

Using the STIs in Landau gauge, Zip = Zg/Zg and Z, Zg Z§/2 = 1, where 23, 73
and Z; are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

16 _, 1 Iy
S(p, i, A) = —SZQQ/ify“S(q, e Z( aViy” + al? )1”) (L, k), (3.7)

q =1

()

where we defined the coefficients o
and the vertex dressings:

as combinations of the gluon dressing function

2 1

D@1k k) = L 202, 12) O 21k, K2 ). 3.8
( ) 47_‘_2223 ( 7/"’)fz ( b ) 7”) ( )
They are independent of the renormalization point, as can be inferred from Zyg Zs Zs 2 _
1 and the renormalization-scale dependence of the quantities g ~ 1/Z,, Z ~ 1 /Z3 and
fi~ 22/ Z3.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has
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FIGURE 3.2: The meson BSE (3.9) in RL truncation, Eq. (3.11).

been made both analytically in terms of infrared exponents of the Green functions, e.g.
[41,92-96], as well as numerically for general momenta in certain truncations [42,97,98].
The implementation of such a scheme is however beyond the scope of the present study.
In the following we will motivate the use of underlying symmetry properties of QCD
to arrive at a consistent truncation whose numerical implementation is feasible in our
bound-state approach.

Meson BSE. The quark-antiquark bound state amplitude I'(p, P) with relative mo-
mentum p, total momentum P, and mass M (at P? = —M?) is the solution of a
homogeneous Bethe-Salpeter equation (see Fig. 3.2)

A
Fa,@(p7 P) = /Kawﬁﬂ(p’% P){S((H.)F(Q, P)S(_Q—)},ng (39)

where Greek indices represent Dirac, color and flavor indices, and the quark and an-
tiquark loop momenta are ¢ = ¢+ oP and g = —q¢ + (1 — 0)P. The conventions
for the momenta were chosen to comply with the diquark case, cf. Eq.(5.6). The
momentum partitioning parameter o € [0, 1] is arbitrary since in a covariant descrip-
tion there is no frame-independent definition of a relative momentum. Translation
invariance implies that for each BSE solution I'(p, P;o) a family of solutions of the
form I'(p + (o — 0’) P, P; 0’) exists [99]. For equal quark and antiquark masses a value
o = 1/2 maximizes the calculable meson mass (see App. B.3) and simplifies its bound-
state amplitude.

The arguments g% of the quark propagator’s dressing functions in (3.9) are complex
for timelike P?; methods to evaluate the quark propagator in the complex plane of
Euclidean four-momentum-squared are discussed in App. A.1. The amplitude’s depen-
dence on p, P can be formulated in terms of the three Lorentz invariants p?, P?, and
z=7p- P. Calculations are simplified if the dependence on the angular variable z is
expanded in Chebyshev polynomials (see App. B.2). The spin structure of the ampli-
tudes for different sets of quantum numbers and the method for solving the BSE are
presented in App. A.3.
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FIGURE 3.3: The axial-vector Ward-Takahashi identity (3.10) relates quark self-energy
and quark-antiquark kernel. Crossed circles denote a +° insertion.

The kernel K is the amputated quark-antiquark scattering kernel which is irreducible
with respect to a pair of ¢g lines. Along with the quark propagator, it provides the
physical input to the meson BSE and must be known in advance to obtain a solution
for the meson’s amplitude and mass.

Rainbow-ladder truncation. The central identity which ensures the correct imple-
mentation of chiral symmetry and its dynamical breaking in a bound-state approach is
the AVWTI [68]. It provides a relation between the quark self-energy and the quark-
antiquark kernel, the latter of which appears in the meson’s bound-state equation. The
identity can be expressed as

{+*5(=p) + 2(p4) 7} o5 = /Ka»y,agp,q, ) 17° S(=a-) +8(a:)7°},; (3.10)

and is sketched in Fig. 3.3. A qq kernel which preserves the AVWTI ensures a massless
pion in the chiral limit as the Goldstone boson related to dynamical chiral symmetry
breaking. In addition, Eq. (3.10) leads to a generalization of the Gell-Mann-Oakes-
Renner relation for all pseudoscalar mesons and current-quark masses [68]. In this
respect it is imperative for any meaningful truncation of the system of DSEs and BSEs
to satisfy this identity.

A systematic procedure to formulate a g kernel which preserves the AVWTI through
functional derivatives of the quark self-energy has been introduced in [100]. Following
this prescription, several such constructions have been devised in the literature [42,
101-110].

The simplest setup which corresponds to the lowest order in such a symmetry-
preserving truncation scheme is the rainbow-ladder (RL) truncation. In this framework
the ¢q kernel is expressed by a gluon ladder exchange, including the gluon propagator,
one bare and one ’dressed’ quark-gluon vertex. To satisfy Eq. (3.10), the dressed vertex
may however only involve Dirac basis tensors with an odd number of gamma matrices,
and it can only depend on the gluon momentum k. This leaves a vector part v* with
a purely k2-dependent vertex dressing the only option in both quark DSE and meson
BSE. The resulting ladder kernel is written as

dra(k?) (N A , v v
Konps(pq, P) = szﬁ) <2>AC(2> (i7" )ary T (14" s (3.11)
BD



3.2 Effective quark-gluon interaction 25

where the SU(3)¢ Gell-Mann matrices \; are explicitly stated. The flavor structure in
the BSE gives no contribution in an equal-mass system with isospin symmetry.

In the same way as earlier, the gluon propagator and quark-gluon vertex dressings
have been combined into an effective coupling a(k?). By virtue of the RL truncation,

it is related to the agj) of Eq. (3.8) via

agl)(ZQ,l -k, k*) = a(k?*), and all other al?) =0. (3.12)

)

It poses the single unknown function in the rainbow-ladder approach.

3.2 Effective quark-gluon interaction

By virtue of the RL truncation, the entire framework rests upon a choice for the effective
coupling a(k?). Rainbow-ladder represents the perturbative remainder of both quark-
gluon vertex and the qq kernel. To satisfy the one-loop relations of perturbative QCD,
a(k?) must approach the asymptotic behavior of QCD’s running coupling:

2y k%2—o0 TYm

a(k?) o k2/Aggcp , (3.13)
where v, = 12/(11N¢ — 2Ny) is the anomalous dimension of the quark propagator (in
our calculation we use ,, = 12/25 which corresponds to Ny = 4). On the other hand,
the interaction should exhibit sufficient strength at small gluon momenta to enable
dynamical chiral symmetry breaking and the generation of a constituent-mass scale for
the quark — a feature which would be the result of a combined DSE solution. This
translates into strong non-perturbative enhancements of the quark dressing functions

A(p?) and M (p?) at infrared momenta, see, e.g., [17].
Several models for a(k?) combining the UV limit with an ansatz in the infrared
have been employed in the past and applied to detailed studies of meson physics [75,

76,78-80,111,112]. In the present study we implement the interaction of Maris and
Tandy [79] which reads

2\ 2 TVm, 1-— e_kZ/A(Q)
a(k?) = & </’i2> e R /(W2 AG) 4 ! < ) : (3.14)
2
0 ln\/e2—1+ (1+k2/A220D)

where we use Agcp = 0.234GeV and Ag = 1GeV. The first term of (3.14) charac-
terizes the infrared properties, expressed through the two parameters ¢ and w which
will be discussed in detail below. It provides the characteristic infrared strength which
is crucial for a dynamical quark mass generation. The second term accounts for the
ultraviolet behavior of (3.13) and is thus constrained by perturbative QCD.

We note that the ansatz (3.14) behaves as a(k?) — k? for k? — 0. This facilitates the
numerics as the self-energy integral is of lesser divergence in the infrared, see App. A.1.
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Nevertheless, since the quark DSE is dominated by the interaction at intermediate
momenta, the explicit behavior in the deep infrared does not play an important role for
hadronic ground states. This has been explicitly verified in [108] with a parametrization
different from (3.14).

Physical input. The two parameters ¢ and w which appear in the ansatz (3.14) mod-
ulate the coupling’s strength and width in the infrared. Studies using this parametriza-
tion have demonstrated that pseudoscalar and vector-meson ground state properties
are insensitive to a variation of the coupling width w in a certain range [79], i.e. inde-
pendent of the detailed shape of the interaction in the infrared. Such an insensitivity
has been found for the ground state of the nucleon in the quark-diquark model as
well [113]. To highlight this property we will present subsequent results in terms of
‘w—bands’ which denote a variation w = & + Aw.

In the context of the aforementioned hadron masses, the infrared coupling strength
c is accordingly the only active physical parameter in the entire setup. In contem-
porary meson studies it has usually been fixed to reproduce the experimental value of
f= =131 MeV at the u/d current-quark mass. Guided by results from experiments and
lattice QCD, one may choose a current-mass dependent coupling strength c¢(m), where
m is the renormalization-point independent current-quark mass, to implement phe-
nomenologically reasonable assumptions that comply with the heavy-quark sector. In
the following we will give a short overview of the strategies that have been undertaken
in the literature and will be used as an input to our calculations.

(C1) Current-mass independent coupling strength. A setup which has been ex-
tensively used in the literature [70,71,78,79,81,83-88,91,114-116] involves a coupling
strength that is independent of the quark mass, chosen to reproduce the phenomeno-
logical quark condensate and experimental pion decay constant fr = 131 MeV at the
u/d current-quark mass associated with m, = 138 MeV. The corresponding value of
the coupling strength is ¢ = 0.37. It enables a reasonable description of masses, de-
cay constants and electromagnetic properties of ground-state pseudoscalar and vector
mesons up to bottomonium [115].

(C2) Fit to the lattice mass function. The availability of lattice data for the quark
propagator, gluon propagator and quark-gluon vertex, e.g. [117-124], has provided a
means to test the properties of Dyson-Schwinger solutions, in particular with regard
to their larger quark-mass behavior. Several parametrizations for the quark-gluon
interaction have been employed in the literature and compared to lattice results, either
in a rainbow-ladder-like context [46,125-127] or more general setups [42,45,104, 108,
128].

A strategy explored in Ref. [129] was to adopt the ansatz (3.14) in the rainbow-
ladder approach, where its strength ¢(7) is kept intact in the chiral region to recover
fr at the physical pion mass, but diminished for larger masses such that the resulting
quark mass function M (p?) agree with quenched lattice results of Ref. [117]. A current-
mass dependent coupling therefore emulates to some extent a quark-mass dependent
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structure in the quark-gluon vertex beyond rainbow-ladder. Upon solving the respec-
tive meson and quark-diquark BSEs, corresponding results underestimate m, and My
obtained from lattice calculations at larger quark masses, e.g., by ~ 10% at the strange-
quark mass [129]. This result either suggests inconsistencies between different lattice
techniques or an inaccuracy of rainbow-ladder well beyond the strange-quark mass.

(C3) Fit to the p-meson ”quark core”. A third practical strategy is to implement
phenomenological assumptions about the nature and possible impact of corrections
beyond RL upon hadron properties, and to adjust the current-mass dependence of the
effective coupling in a way where these corrections are explicitly missing.

One important effect in the chiral and low-energy regime of QCD is imposed by
pseudoscalar meson-cloud contributions, cf. Section 2.2. Such corrections provide a
substantial attractive contribution to the 'quark core’ of hadronic observables in the
chiral regime whereas they vanish with increasing current-quark mass. Their impact
on the chiral structure of the quark mass function and condensate, fr, m,, and nucleon
and A observables has been demonstrated in the NJL-model [136,137], DSE studies
[61,64,108,138], and chiral extrapolations of lattice results [58]. A sizeable reduction
of p-meson, nucleon and A masses is paired with an increase of hadronic charge radii
towards a logarithmic divergence in the chiral limit. The latter effect is clearly missing
in a RL truncation as can be inferred, e.g., from the BSE result for the pion charge
radius displayed in Fig. 3.7.

A further resummation of non-resonant Abelian diagrams in the quark-gluon ver-
tex and ¢g kernel provides additional attraction in the vector-meson channel which
decreases with increasing current-quark mass [103,105,107]. On the other hand, an in-
clusion of the three-gluon vertex exhibits a substantial amount of repulsion [110] which
suggests a non-perturbative cancellation mechanism beyond RL [102]. Nonetheless one
may construct a rainbow-ladder ’quark core’ which overestimates the experimental p-
meson mass, most noticeably towards the chiral limit, and resembles the hadronic quark
core of chiral effective field theories which is subsequently dressed by chiral corrections.
Such an inflated quark core mass for m, has been used in [60] via (see Fig. 3.5)

x%zl—{—xi/(o.ﬁ—}—xi), xp::mp/mg, :L"ﬂ::mﬁ/m?7 (3.15)

with the chiral-limit value mg = 0.99 GeV. The sum of corrections beyond RL would
then reduce m,, in the chiral limit by ~ 25% whereas the quark core contribution to
m, approaches lattice results above the s-quark mass. To reproduce Eq. (3.15) upon
solving the p-meson BSE, the coupling strength ¢ of Eq. (3.14) must be equipped with
the following current-mass dependence (see Fig. 3.4):

0.86 b(Aw)
1+ 0.885 24 + (0.474.24)2

c(w,m) =0.11+ xq :=m/(0.12GeV). (3.16)

At each value of the current-quark mass 7, the parametrization

b(Aw) =1 —0.15 Aw + (1.50 Aw)? + (2.95 Aw)? (3.17)
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FIGURE 3.4: Left panel: Coupling strength c(w,m) in setup (C1) (dashed line) and
(C3) (solid band), cf. Eq.(3.16). The current-mass evolution is expressed in terms
of the squared pion mass obtained from the pseudoscalar-meson BSE. Right panel:
Coupling strength in (C3) as a function of the width parameter w for five different
current-quark masses. The current-mass dependent w plateaus are reflected in (3.18).
The dotted vertical line corresponds to Aw = 0, the shaded region to |Aw| < 0.1.
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FIGURE 3.5: Solution for m,(m2) in setup (C1) (dashed line) and (C3) (solid line),
where the latter is identical to the parametrization of Eq. (3.15). The curves may be
regarded as the input which defines the coupling strength c¢(ri2) in both setups. We
compare to a selection of lattice data [130-132] extracted from Ref. [133], and the

results of [134] together with a chiral extrapolation [135] (blue band).
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eliminates the residual w dependence of the BSE result for m, and ensures the validity
of Eq. (3.15) in the range w = w(m) £ |Aw|, with the central value given by

(M) =038+0.17/(1+z,), |Aw|/S0.1. (3.18)

As demonstrated in Refs. [60,113] and this thesis, the procedure induces consistent
overestimated values for a range of m, p, nucleon and A observables as obtained from
their respective meson BSEs, quark-diquark BSEs and Faddeev equation. The results
are only weakly w-independent within the range (3.18).

By implementing either of the discussed models for the current-mass dependent
coupling strength, the combination of quark DSE (3.2), meson BSE (3.9), rainbow-
ladder kernel (3.11), and effective coupling (3.14) completely determines the subsequent
results. In the course of this thesis, these results will be primarily presented in the
‘quark core’ model (C3) and occasionally compared to those obtained with a fixed
coupling strength (C1). Shaded bands denote the sensitivity to a variation of w which
we consider for the (C3) setup only; all results corresponding to (C1) are plotted with
a current-mass independent value @ = 0.4. A connection between the two setups will
be established in the next section.

3.3 Analysis of rainbow-ladder meson results

Quark propagator. A characteristic feature of QCD is the dynamically generated
enhancement of the quark mass function M (p?) at small momenta, visible in Fig. 3.6.
The resulting constituent-mass scale, e.g. M (p? = 0), is typically several hundred MeV
larger than the current-quark mass which is the input of the DSE. In addition, Fig. 3.6
illustrates the impact of the overestimated quark-core model (C3) on the quark prop-
agator dressing functions M (p?) and Z;(p?). The resulting mass function at infrared
momenta is considerably larger than the respective lattice results. An implementation
of pionic effects in the ¢G kernel reduces this difference [108,128].

The singularity structure of the resulting quark propagator, i.e., of its denominator
1/ (p2 + M? (pQ)), is that of complex conjugate poles, a feature which may be an artifact
of the rainbow truncation but has been found in more general truncations beyond
rainbow-ladder as well [42,128]. The pole positions depend on the infrared width w,
see Fig. 3.6: a larger value w forces the poles closer to the timelike axis while a smaller
value shifts them further into the complex plane. The resulting trajectory is similar to
the boundary of the parabolic integration domain which is needed in the subsequent
bound-state equations. It constitutes the singularity limitations encountered in the
calculation of form factor diagrams, cf. App. B.3.

The vacuum quark condensate can be calculated from Eqs. (A.3-A.5). The value
shown in Table 3.1 is obtained from the perturbative tail of the chiral-limit mass func-
tion and evolved to the scale ;1 = 1 GeV via the one-loop formula (A.5). As discussed in
connection with Eq. (3.21), the quark-core setup (C3) operates with an inflated scale
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FIGURE 3.6: Left panel: Quark mass function M (p?) and wave-function renormaliza-
tion Z;(p?) in setup (C3), at a current-mass value 1 which corresponds to m, = 0.63
GeV, compared to lattice results [120]. A renormalization point u = 2.9 GeV was
chosen. The lower (upper) edge of the bands is related to the largest (smallest) value
of w for M(p*), and vice versa for Z(p?). Right panel: Complex conjugate poles of
the quark propagator in the complex p? plane for different values of w. The apex of
the corresponding parabola (B.17) defines the w-dependent 'pole mass’ m,.

1/3

AR n (@)1 Gev fr fo m, Tr
Phen./Exp. 0.236 0.131 0.216 0.77 | 0.67
(C1) 0.72 1.8 0.235 0.131 0.208 0.73 0.66
(C3) 0.98 | 1.8(2) 0.319 0.176 | 0.280(6) | 0.99 | 0.49
Ratio 0.73 0.74 0.74 0.74 0.74 0.74

TABLE 3.1: Comparison of the quark condensate, m and p decay constants, p-meson
mass, and pion charge radius in setups (C1) and (C3), characterized by the parameters
Amr and 7 defined in (3.19). A variation of n = 1.8 £ 0.2 in (C3) coincides with
w =~ @ £ 0.06. The results correspond to a current mass m = 6.1 MeV which is related
to the physical pion mass m, = 138 MeV. Experimental or phenomenological values
are quoted in the first row. In the first three rows, 7 is dimensionless and 7, is given
in fm, all other units are GeV. The last row plots the ratios of sets (C1) and (C3).
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of dynamical chiral symmetry breaking. This overestimation compared to the phe-
nomenological value is visible in the quark condensate and consistent with the solution
for the quark mass function. Pionic contributions to the condensate are attractive, cf.
Refs. [108,136].

Meson properties. A solution of the pseudoscalar and vector-meson BSEs provides
the respective bound-state amplitudes which are subsequently used to calculate physical
meson properties. Table 3.1 collects results for m and p decay constants, obtained
from Egs. (A.44), and the pion charge radius, Eq.(A.48). One observes a uniform
response to the inflated quark core for m,: expressed in units of mass, the tabulated
quantities related to the input (C3) consistently overestimate their experimental values
by ~ 30 —35%. Moreover, f, and r, tend to approach lattice results for heavier quarks
(see Fig. 3.7). This validates the notion of a pseudoscalar meson cloud which increases
a hadrons charge distribution towards the chiral limit where the charge radius would
diverge.

Relation between the models. Simple relations between the setups (C1), (C2)
and (C3) can be established in the chiral limit. To this end it is beneficial to rewrite
the infrared part of the coupling (3.14) in a more suggestive way. Upon replacing the
infrared parameters ¢, w and Ag by two new parameters Ajg and 7, defined via

AIR>3 1<AIR>
oo (AmYT LAY 3.19
<A0 n \ Ao (3.19)

the infrared contribution to the effective coupling a/(k?) is expressed through
arr (k?) = 7TT]7J,‘2€77]2‘T, x = k%/Afg. (3.20)

Ar only appears in the denominator of x, hence it is the only dimensionful scale of the
rainbow-ladder truncated DSE-BSE system in the chiral limit as long as the UV part
of the coupling is not taken into account. It represents the scale of dynamical chiral
symmetry breaking which, in a coupled solution of quark, gluon and ghost DSEs, would
be generated self-consistently. As a consequence, mass-dimensionful quantities which
are sensitive to the infrared properties scale with Ajg. The chiral-limit values of Ajg
are

(C1): A =0.72GeV, (C3): A = 0.98GeV, (3.21)

which makes clear that the model (C1) for a given set of observables will, upon entering
its 'core version’ (C3), produce results which are overestimated by the same percent-
age. Dimensionless chiral-limit ratios between the two setups will be equal, namely
(0.72)/(0.98) = 0.73. Table 3.1 demonstrates that this scaling property still persists at
the physical u/d mass where the disturbance from a non-vanishing current-quark mass
is negligible.

The second parameter 71 replaces the coupling width w. An insensitivity of ob-
servables with respect to a variation of the width w at a certain coupling strength ¢
translates into an invariance with respect to n at a fixed scale Ajg. The combined



3.3 Analysis of rainbow-ladder meson results 33

change of ¢ and w from (C1) to (C3) according to Eqgs. (3.16-3.17) is equivalent to a
rescaling of Aigr where 7 is essentially unchanged.

A rainbow-ladder 'mass formula’. The analysis can be extended to finite current-
quark masses where the additional scale m or, equivalently, the pion mass m; is in-
troduced. An investigation of the numerical results exhibits that quantities with the
dimension of a squared mass, generically denoted by U, allow for a scale separation in
the following way (see Fig. 3.8):

Mg (m3) ~ agy(n) Afg + by (m3) m . (3.22)
For a vanishing pion mass, the first term in (3.22) reproduces the observation from
above: masses scale with Arr, and the dimensionless chiral-limit values ayy may depend
on the infrared width parameter 7. For a finite current-quark mass, the second term
is found to be insensitive with regard to the infrared parameters Ajg and 7: it only
depends on m, and the remaining scales Agcp and Ag in the coupling.

The dimensionless coefficients by are generic functions of m, which account for any
additional pion-mass dependence of the results. In the heavy-quark limit they would
represent the dimensionless values of My in units of m,. A BSE analysis of heavy-
meson observables [116, 148, 149] confirms that meson masses become proportional to
my, such that e.g. bp,(0c0) — 1, whereas decay constants behave as ~ /m, which
implies that by, and by, vanish with an inverse square root of the pion mass.

We tested Eq. (3.22) up to m ~ 200 MeV for a range of quantities

U= M(0)7 Mg, Mp, Jrs fpv 1/rﬂ‘7 Mg, May, My, Ma, (323)

where the diquark and baryon masses are determined in Chapter 5. The relation
breaks down below Ajg < 0.5 GeV which is related to the threshold of dynamical
chiral symmetry breaking in the quark DSE. In the domain of its validity, a rescaling
of Ajr — Ajy in the infrared part of the effective coupling (3.14) produces a current-
mass independent additive contribution to squared masses. This infrared component
may however depend on the parameter 7. In the 'core model’ (C3), Az was chosen

pion-mass dependent; nonetheless Eq. (3.22) provides an estimate for its results:
202N o A2 (02 2 2 2 2
M (m2) = ME(m2) + s (n) (AT (m2) = Afg) (3.24)

Moreover, if two quantities U and V independently satisfy ay ~ by and ay =~ by,
then their ratio My /My ~ ay /ay will only weakly depend on m2 and Ajg. This is most
remarkably realized for the dimensionless product frr, (Fig.3.9): for the pion-mass
range under consideration, it is constant in m2, identical in (C1) and (C3) (i.e., inde-

pendent of Ajg), insensitive to n (since both f; and r, are very weakly n-dependent,
see Fig. 3.7), and it agrees with the experimental value and lattice-QCD results [137].
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Chapter 4

Baryons: Three-body equation

The three-body bound-state problem has a longstanding history which dates back to
the original work by Faddeev [150]. Non-relativistic Faddeev equations have found
widespread application in the description of three-nucleon systems, see Ref. [151] for
an overview. The covariant generalization of the Faddeev equation to the three-body
analogue of a Bethe-Salpeter equation was formulated in Refs. [65,152]; a comprehen-
sive introduction can be found in [67]. Within the framework of Section (2.3), the
equation describes the baryon as a bound state of three spin-1/2 valence quarks where
the interaction kernel comprises two- and three-quark contributions.

A solution of the covariant three-body equation requires knowledge of the dressed
quark propagator and the three-quark kernel; and a specification of the Poincaré-
covariant baryon amplitude. The relativistic spin structure of the latter has been
explored in [153,154] and described in the light-front formalism in [155-158]. A com-
plete classification according to the Lorentz group and the permutation group S3 was
derived in [159] in terms of covariant three-spinors. Their analogues in the form of
Dirac tensors, kindred to the decomposition of Green functions and meson amplitudes
encountered in previous chapters, will be stated below (cf. Table 4.1).

The complexity of the three-body bound state equation has so far prevented a direct
numerical solution. Upon implementing perturbative quark propagators it has been
studied, for instance, in the works of Refs. [160,161], in the context of a three-body
spectator approximation [162], or a Salpeter equation with instantaneous forces [67].
The corresponding equation of a scalar three-particle system with scalar two-body
exchange based on the Wick-Cutkosky model [163,164] was recently investigated and
compared to the light-front approach [165]. An appealing strategy to simplify the
three-quark problem while maintaining full Poincaré covariance is provided by the
quark-diquark model which will be discussed in Chapter 5.

The present chapter is devoted to a novel solution of the three-quark bound-state
equation of the nucleon where the full Dirac structure of the covariant amplitude is
taken into account. The numerical computation is performed upon truncating the
kernel to a rainbow-ladder gluon exchange which allows for a direct implementation
of the effective quark-gluon coupling a(k?) introduced in Chapter 3. The resulting
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current-mass evolution of the nucleon mass, when compared to lattice data, exhibits a
behavior which is qualitatively similar to that of the vector meson in the same approach.

A future extension to more sophisticated interaction kernels is certainly possible.
This involves an inclusion of irreducible three-body forces, supposedly dominated by
a three-gluon coupling to any of the three quark lines, and a generalization towards
a quark-quark interaction beyond rainbow-ladder. In the context of meson studies,
the latter has attracted a considerable amount of attention in recent years, and an
implementation of the findings in the three-body approach will certainly provide further
insights into the physics of baryons.

4.1 Faddeev amplitude and equation

Baryons appear as poles in the three-quark scattering matrix. The derivation pursued
in Section 2.3 leads to a relativistic three-body bound-state equation which is the direct
analogue of the Bethe-Salpeter equation in the quark-antiquark channel:

v=K®w, KO=kD 1N K, (4.1)

where ¥ is the baryon’s bound-state amplitude. The respective 3-body kernel K ),
stated in Eq. (2.20), comprises a 3-quark irreducible contribution and the sum of per-
muted two-quark kernels, where the subscript ¢ denotes the respective accompanying
spectator quark. The quark-antiquark analogue of the two-body kernel K® appears in
the meson BSE (3.9) where we employed a ladder truncation together with a rainbow-
truncated quark propagator.

It has been the guiding assumption for the quark-diquark model that correlations of
two quarks provide the dominant binding structure in baryons. This was inspired by
noticing that colored two-quark states can appear in an SU(3)c anti-triplet or sextet
configuration where the former, in combination with a color-triplet quark, allows for
the formation of a color-singlet nucleon. The observation motivates the omission of
the three-body irreducible contribution from the full 3-body kernel. The resulting
relativistic Faddeev equation includes a permuted sum of two-body qq kernels:

v=>Y Kk%v, (4.2)

which enables an adoption of the formalism established in Chapter 3 in the three-
body problem. Eq. (4.2) represents a technical simplification as well since the equation
merely includes one momentum loop and becomes computationally tractable.

Nucleon amplitude. The bound-state amplitude ¥,3.5 of a nucleon carries 3 spinor
indices {«, 3,7} for the involved valence quarks and one index ¢ for the spin-1/2 nu-
cleon. It depends on three quark momenta pi, p2, p3 which may be reexpressed in
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FIGURE 4.1: Faddeev equation (4.6) in rainbow-ladder truncation.

terms of the total momentum P and two relative Jacobi momenta p and g. They are
related via:

Pd p, 1-n
p=1-n)ps—npa, m=—q+5 =—qg—5+ P,
2 2 2
P2 —p1 Pd p,1-n (4.3)
f— = _—= _— _— P
q 5 P2=qt 5 =q-5+— ;
P =pi+p2+ps3, p3=p+nPk,
where we abbreviated pg := p1 + p2. The relations between the momenta can also

be inferred from Fig.4.1. We have chosen equal momentum partitioning 1/2 for the
relative momentum ¢ and use the value n = 1/3 in connection with the momentum p
which maximizes the upper boundary for the nucleon mass with respect to singularity
restrictions (see App. B.3).

The nucleon amplitude can be decomposed into a certain number of Dirac structures:

64
Vops(p,q, P) =D fi0* ¢ {2}) 7D, @ Pagys- (4.4)
=1

The amplitude dressing functions f; depend on the five Lorentz-invariant combinations

A

p27 q27 ZOZPAT'@a lep'Pa Z2:d'P7 (45)

where a hat denotes a normalized 4-vector and p% = Tﬁ”p” a transverse projection
(TH = §M — ]5“15”). We abbreviated the angular variables by the shorthand notation
{2} = {20, 21, 22}. The total momentum-squared P? = —M? is fixed since the nucleon
is on its mass shell. The Dirac structures 7;(p, ¢, P) will be explained in Section 4.2.

Faddeev equation. Using the above kinematics, the full Dirac and momentum de-
pendence of the Faddeev equation (4.2) reads (see also Fig.4.1):

\I’aﬁryg(p, q, P) = / [ Kaa’ﬁﬁ’(k) Sa’a”(kl) Sﬁ’ﬂ” (Eg) \I’a//ﬁn,w;(p(g), q(3), P)
k + Kﬁﬁl,y,yl(k) SB/IBN (l{}g) S’Y"Y” (E3) \IIQ/BII'Y//(;(p(l)? q(l)7 P) (46)

+ Kot (k) Sy (k3) Sararr (k1) Wangns (02,4, P) ] ,
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where we already anticipated a two-quark kernel K that only depends on the gluon
momentum k which is also used as the loop-integration variable. The quark propagators
S depend on the internal quark momenta k; = p; — k and k; = p; + k, and the internal
relative momenta are given by

M =p+ik, gV =q—k/2,
PP =p—k, ¢ =q—-k/2, (4.7)
P =p, ¢ =q+k.

Specifically, we use the rainbow-ladder kernel of Eq. (3.11):

dra(k?) 5
Kaa’ﬂﬂ/(k) = QQT T]g "}/Za, V88" > (48)

which involves two bare quark-gluon vertices and a gluon propagator, subsumed into
the effective coupling a(k?) of Eq. (3.14). Tracing the color structure induced by the
quark-gluon vertices leads to a color factor 2/3 in front of the integral (4.6).

4.2 Dirac basis covariants

A general Green function with 4 fermion legs which depends on 3 independent momenta
involves 256 independent components. The subspaces corresponding to positive and
negative parity consist of 128 Dirac structures each. A possible linearly independent
basis for the positive-parity and positive-energy nucleon is given by the 64 components

4.9
PL(p,q,P): -

1
2
ot
=
=
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=)
ot
8
&
2
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=
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where the T';(p, ¢, P) with i = 1...4, given in Eq. (4.15), carry the relative-momentum
dependence, A (P) = (1 + ﬁ’) /2 is the nucleon’s positive-energy projector and C' =
7% ~2 the charge-conjugation matrix. The notation, e.g. (Sirl)aﬁ;yé = (A4v5C)ap(Ay)ys,
refers to two outgoing quark legs with indices «, 8 on the left-hand side of the tensor
product (hence the (v°C) insertion, cf. Eq.(A.34)) and an outgoing quark and incom-
ing nucleon leg (indices v, d) on the right-hand side, where the positive-energy projector
is attached to the latter. The ordering of indices in the tensor product is insignificant
since, for a complete basis, any permuted version can be expressed by a sum of basis
elements in the above ”canonical” ordering using Fierz identities, see e.g. [157].

Each subspace of definite parity and sign of energy, corresponding to the nucleon’s
(1/2)*, (1/2)*, (1/2)~, (1/2)~ states, includes 64 covariants. The negative-parity
basis elements are obtained by attaching a factor +° to either left or right-hand side
of Eq. (4.9); the negative-energy (antibaryon) structures by replacing Ay on the r.h.s
with the negative-energy projector A_ = (1 — J}AD)/2 The symbols S and P in Egs. (4.9)
were chosen to reflect the combination of two scalar or pseudoscalar covariants whose
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product again exhibits positive parity. All possible further basis elements, e.g.

A5 (P4, P) = 75 (TiAx) (150) @ s (T Ay)
Vip,a, P)i= Af (Tihs) (:0)® A4 (T A4), (4.10)
T5(0,q,P):= of (TiAs) (C0) @ of (TjA4),
linearly depend on the ones of Eq. (4.9); respective relations are given in Eq. (A.76). In

the actual calculation we use an orthogonalized set of covariants constructed from the
basic structures (j =1...4)

S15,P1j, A1, Vi, Ss35,Ps5, S4j, Py, (4.11)

where each carries a superscript (4). Here we have exchanged the elements {Sg;, P2;}
by {Ai;,Vi;} to facilitate a comparison with the multispinor notation used in the
literature, e.g. Ref. [159].

Momentum-dependent covariants. The momentum-dependent Dirac structures
which appear in Egs. (4.9-4.10) involve the following 8 basis elements:

Li(p,q, P)AL(P) € {1, [pdl, b, 4} x {1, P}. (4.12)

It is convenient to choose a set of momenta {p7,, P} which are orthonormal with
respect to the Fuclidean metric, i.e.

pl=qg2=P"=1, pr-G=pr-P=g-P=0. (4.13)

This is realized via

P =T5"p", @' =TT ¢ =T qf (4.14)
where T,f Y = §" — kkY denotes a transverse projector with respect to any four-

momentum k. The four covariants I';(p, ¢, P) are those of a fermion-scalar vertex and
effectively depend on two momenta:

Fz(pa q, P) = {]]-7 %[¢T7¢t]7 I$T7 gt} . (415)
Without loss of generality one may choose the momentum alignment (cf. Eq. (B.5))

0 0
0 /1 —22./1— 2
P =p? — | "= \/fz_—zgz() o, (4.16)

21 22
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which yields in the baryon’s rest frame:

0 0 0 0

Y 2

pr= |, = |0, = VA, gt @
0 1 2 0
1 0 0 0

and hence Ay = %(]l +~%) and T(p,q, P) = {]l, 342, 3, 72}. The loop momenta
and covariants inside the integral of Eq. (4.6) will naturally have a more complicated
appearance.

Angular momentum decomposition. The Dirac basis elements (4.11) can be clas-
sified with respect to their quark-spin and orbital angular momentum content in the
nucleon’s rest frame. In general only the total angular momentum j = 1/2 of the
nucleon is Poincaré-covariant while the interpretation in terms of total quark spin and
orbital angular momentum will differ in every frame. The spin is described by the
Pauli-Lubanski operator:

1 ~
Wi =2 el pryes, (4.18)

where we chose the total momentum P to be normalized. J* and P* are the generators
of the Poincaré algebra satisfying the usual commutator relations. The square of the
Pauli-Lubanski operator,

1 ..
W2 = SRR g PRPY TR, (4.19)

is one of the two Casimir operators of the Poincaré group. Its eigenvalues are given by
W2 — j(j + 1), where j describes the spin of the particle.

For a system of three particles with total momentum P and relative momenta p
and ¢, the total angular momentum operator consists of the total quark spin S and
the relative orbital angular momentum L = L,y + L. Upon subsuming them into
Lorentz-covariant operators

St = Leuwad pr (a“ﬁ 11+180Y21+1016 o"‘ﬁ) : (4.20)
Ll = heved pr (waﬁ _ p’653> 1911, (4.21)
Lt = feedpr (qaag _ qﬁag) 1911, (4.22)

one may verify that the basis covariants (4.11) are indeed eigenfunctions of the square
of the Pauli-Lubanski operator W# = S* +L€‘ ) +L€‘ y with j =1 /2. Here the following
identities prove to be useful:

522%]1®]1®11+%(U%V®U§Lf'®]l—|—perm.) ,
S-L) = %pl:; (Or)p (o ®1 ®1 + perm.) ,
L{,) = 20 (Or)y + P07 (0r)5(0r)y, — 97 (O7)p- (O1)p
L(p) L(q) —plf“q (aT) (aT) —pr-qr (01)p-(Or)q -
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s LooX5 | X5 | VvBXg | VBXG || #
1/ 0 S11 P11 A1l Vi1 8
1/2 1 S12 P12 A2 Vio 8
1/2 1 S13 P13 A1z Vi3 8
1/2 1 514 P14 A14 V14 8
s l \/€X§j \/6xécj #
3/2 2 3533 — V11 3 P33 — AH 4
3/2 1 3534—3543—2V12 3P34—3P43—2A12 4
3/2 1 3 S31 — V13 3 P31 — A13 4
3/2 1 3 541 — V14 3 P41 — A14 4
s l V2X, V2Xg i
3/2 2 2544 4+ S33 — V11 2Py + P33 — Ay 4
3/2 2 S34 + S43 P34+ Pys 4
3/2 2 —2S49 + S31 — Vi3 —2P42 4+ P31 — Ags 1
3/2 2 2530+ S41 — Vs 2P32 + P41 — Ay 4

TABLE 4.1: Orthonormal Dirac basis constructed from Eq. (4.11) via a partial-wave
decomposition. The superscripts 4+ are not displayed.

The basis states can furthermore be classified with respect to the eigenvalues of
S%? — s(s+ 1) and L? — I(I + 1), which, in the nucleon’s rest frame, assume the
interpretation of total quark spin and intrinsic quark orbital angular momentum. Such
a partial-wave decomposition allows for an arrangement of the 64 basis covariants (32
for total quark spin s = 1/2 and s = 3/2, respectively) into sets of 8 s waves (I = 0),
36 p waves (I = 1), and 20 d waves (I = 2). We denote the resulting orthonormal basis
states by the symbol Xiij, withi=1...8and j =1...4, and collect them in Table 4.1.

Orthogonality. The combinations X;E satisfy the following orthogonality relation:

%TI'{X:] X:/lj/} — % (ng)ﬂa,év (X;/Ij/) — 61'1'/ 5]]/ 61“r’ 5 (423)

aBysé
where the charge conjugation X is defined as

X(p,q,P) = (C @ C)X(—p, —q,—P)T(CTe CT). (4.24)
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As an example, consider:

S5 (p.q. P) =C{Ti(=p, ~¢. ~P) A 75} CT @ C{Tj(=p,—q,~P)A_} O =
= (CTys) (ALTh) ® (A4T)),

where we used T;(p, ¢, P) = CTi(—p, —q, —P)T CT and the relations Ay (—P) = A+(P)
and AL(P) = CAL(—P)CT = AL(P).

Multispinor notation. An alternative way to construct a basis for the nucleon am-
plitude is to use the Dirac spinors U?(P), V?(P) = v5U?(P) which satisfy the free
Dirac equation for a spin-1/2 particle, i.e. which are eigenspinors of the positive and
negative energy projectors Ay. Normalized to UP(P)U?(P) = §,,, they are expressed
as

- e+ M w’ B 5 5 1 (1 1 (0
U’ (P) = 5 (c-Pwa>’€_ P+ M?, w' = o) v =11 (4.25)

e+M

The 64 linearly independent basis states for the nucleon wave function are obtained
from the multispinors UUU := U U QU, VVU, VUV, UVV and their parity-reversed
counterparts VVV UUV,UVU, and VUU by equipping them with the 8 possible spin-
up/down arrangements 117, 77/, and so on. A corresponding basis has been explicitly
constructed in Ref. [159]. Using identities such as

Ay =0T+ UNTY, AL (s0) =UYWUT - UTUY (4.26)

leads to the following relations for the s-wave basis states of Table 4.1:

-Sh Ul =Ww'vt -vluhut ALU! = UUt+Uluhy Ut - 200U,

-Sp Ul =(vivli—vivhut, AL U =iVl vivhul —2vIivigt,
~PLUT = (VU -viuh) V! ViUl = (iUt +vioh VT —2viutvi,

—PL U =WV -UlvhHV! -V U =Uvl+Uulvhv UTVTVi.

Due to the Poincaré-covariant construction of Egs. (4.9-4.10), the remaining 56 covari-
ants depend on the relative momenta. For instance, the Dirac structure S;; satisfies
the relation

iSp U= (VIVE VIV ((Frh + i) Vi + V) - (@427)

Using the special momentum alignment (4.17) leads to

(4.17)
—_—

iSz U (vivi—vivhyl (4.28)

and similar relations for the remaining basis elements in Table 4.1. At the same time
the expression (4.28) is the ’parity-flipped’ counterpart of Sfl,

—(3®%)SH (4 U =WV —vivhvT, (4.29)



4.3 Quark exchange and Pauli principle 43

which appears in the amplitude of a negative-parity nucleon (1/27) and that of a
positive-parity antinucleon (1/2%). Nevertheless the seemingly odd-parity structure
(4.28) in the multispinor basis still contributes to the (1/27) state via Eq. (4.27), where
the parity flip induced by the spinor replacement U — V' is saturated by an odd parity
introduced by the relative momentum pr. As a consequence, indeed all 64 three-spinor
combinations contribute to the nucleon’s amplitude.

4.3 Quark exchange and Pauli principle

The full Dirac—flavor—color amplitude of the nucleon reads (cf. Eq. (A.74)):

€ABC

V6

The Pauli principle requires the Faddeev amplitude to be antisymmetric under exchange
of any two quarks, as can be inferred from Eq. (2.33). The color singlet wave function
eapc 1s totally antisymmetric, hence the Dirac-flavor amplitude must be symmetric.
Since the two isospin-1/2 flavor tensors Taq,, Tumg, given in Eq. (A.75), are either
mixed-symmetric or mixed-antisymmetric, the same feature must hold for the Dirac
remainders W, and Wy, of the nucleon amplitude.

The Faddeev kernel K®) is per construction invariant under the permutation group
S? : it commutes with any permutation of two quark legs. The Dirac parts of the
solutions to the Faddeev equation can be arranged into irreducible S* multiplets

Us, Uy, <\£/\J\:A) 7 (4.31)
S

of which the first two (totally symmetric or antisymmetric solutions) are unphysical
while the mixed-symmetry doublet constitutes the nucleon amplitude according to
Eq. (4.30). The Faddeev equation will in general mix the two linearly independent
solutions W ¢, and ¥ . However, since the rainbow-ladder kernel presently employed
is flavor-independent and the two flavor tensors T, and T4 are orthogonal to each
other, the equations for the Dirac amplitudes W4 ,, Vs decouple:

\IJ/\/IA :[}(3) \IIM_A?

v=K®y — N
U = KO Wy,

(4.32)

These two states do indeed emerge as independent solutions upon solving the equa-
tion. The dominant amplitudes in either case are the mixed-antisymmetric and mixed-
symmetric covariants defined in Egs. (4.9) and (4.10):

Upiy ~ Siy = A (10) @ Ay, (4.33)
Upnis ~ Al =775 AL (15C) @ s A (4.34)
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s-wave components. Upon restricting oneself to the eight momentum-independent
covariants of Table 4.1 with s = /2, [ = 0 and applying the S? symmetrizers/anti-
symmetrizers, these 8 basis elements can be rearranged into three mixed-symmetry
doublets and two symmetric or antisymmetric singlets:

1

¢§\/()A = Sfl ’
1

wﬁ\/t)s = Aﬁ

2 _ _
wﬁ\/l)A =P, + P, + 571,

(2) — Vi‘rl _

w./\/ls 1_1 - A1_1 ’

(4.35)
3 _ _ _
wﬁ\A)A =255, + Vi + Vi = (Pf +Ph),

3 _ _ _
1/15\/1)5 =2A5 + Vi =V +3(P - PL),

Ya=(PH+Py)+ (Vi + V) — 257,
s =3 (PE - P1_1) - (Vﬁ - V1_1) - 2A1_1 :

Via exchange of the involved momenta, the dressing functions f;(p?, ¢%, {2}) defined in
Eq. (4.4) transform as irreducible representations of the permutation group as well. If
those coefficients f; were totally symmetric, e.g., by being constant or by depending only
on certain symmetric combinations of p?, ¢> and {z} as derived in [159], the nucleon
amplitude would be a linear combination of the six M 4 and Mg basis elements in

Eq. (4.35):
(xy Ma > > ENA S (4.36)
\I/Ms a Z?:l f~l \II.(/as ‘ |

Since the coefficients f; can appear in all symmetry representations the inclusion of
the remaining Dirac covariants ¥4 and s (and, in general, all 64 basis elements) is
however necessary.

4.4 Results

The explicit numerical implementation of the Faddeev equation is described in App. A.5.
We solve for all 64 dressing functions fi(p?,¢?,0, 21, z2) but omit the dependence on
the angular variable zg = pr - qr for the sake of numerical efficiency. In the context of a
quark-diquark model, the dependence on z is excluded a priori due to the separability
assumption of the amplitude!, cf. Eq. (5.9).

! Note however that this assignment is not strictly valid as the quark-diquark amplitude needs to
be symmetrized to obtain the corresponding Faddeev amplitude, thereby changing the interpretation
of the involved momenta.
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FIGURE 4.2: 0™ Chebyshev moments of the dressing functions corresponding to the
dominant covariants in the Faddeev amplitude W, ,, plotted as a function of p and g.
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p [GeV] . . . p [GeV]

FI1GURE 4.3: First four Chebyshev moments in the variable z; of the dressing functions
at ¢> = 0 associated with the amplitudes Sﬁ.

As a consequence of Eq. (4.32), the two states Wy, and W, emerge as indepen-
dent solutions of the Faddeev equation, where by virtue of the iterative method the
symmetry of the start function determines the symmetry of the resulting amplitude.
Both separate equations produce approximately the same nucleon mass, where the de-
viation of ~ 2% is presumably a truncation artifact associated with the omission of
the angle zg. For each of the two solutions, typically only a small number of covariants
are relevant. Comparing the relative strengths of the amplitudes (cf. Fig. 4.2 for the
mixed-antisymmetric solution) allows to identify the dominant contributions:

Wy Sfl’ 115 W Alev A
Vi + Vi, Vii = Vi,
Si’—37 1_37 P—li_l - P1_1> (4‘37)
Vi + Vi, Vi — Vi,
X33 + X553 X3 + Xo3

which indicates a sizeable admixture of p waves to the dominant s-wave components
(cf. Table 4.1).

Fig. 4.3 displays the angular dependence in the variable z1, in terms of the first
few Chebyshev moments, of the amplitudes Sli1 which contribute to Waq,. The z;
dependence is much more pronounced than that in the variable zo where already the
zeroth Chebyshev moment provides a satisfactory approximation. This is again kindred
to the quark-diquark model, where ¢ is related to the relative momentum between the
two quarks in a diquark amplitude and the dependence on the associated angle 2o is
small, cf. Eq. (A.51).
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FIGURE 4.4: Current-mass evolution of My and m, compared to lattice results: [166-
168] for My and [134,135] for m,. The dashed lines are related to setup (C1). The
solid line for m,, is the input of Eq. (3.15) in setup (C3); the band for My is the result of
the Faddeev equation (mixed-antisymmetric solution). Both correspond to a variation
of w. Dots demarcate the experimental values.

The resulting nucleon masses at the physical u — d quark value in both setups (C1)
and (C3) of Section 3.2 are:

(C1): Yar,: 0.99 GeV, (C3): Uag,: 1.33(2) GeV,

Urs: 0.97 GeV, U 1.31(2) GeV,

where the w dependence is explicitly taken into account in the ’core’ setup (C3). The
current-mass evolution of My is plotted in Fig. (4.4) and compared to lattice results.
The findings are qualitatively similar to those for m,: setup (C1), where the coupling
strength is adjusted to the experimental value of f, agrees with the lattice data while
the input of (C3) provides a description of a quark core which consistently overestimates
the experimental values while approaching the lattice results at larger quark masses.
The sensitivity of My to the width parameter w is more articulate than that of the
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quark-diquark model result for the nucleon mass, cf. Section 5.3, which might also
be a side effect of neglecting the angular variable zy. For a detailed discussion of the
current-mass dependence of My we refer to Section 5.3 where the quark-diquark model
results for My and Ma are compared to estimates from chiral effective field theory.
In this context it will turn out that the quark-diquark solution for the nucleon mass
provides a quite reasonable approximation to the result of the three-body calculation.



Chapter 5

Baryons:
The quark-diquark picture

The underlying assumption of the Faddeev truncation in Chapter 4 was the identifica-
tion of two-quark correlations as the dominant structure which binds a baryon. Upon
implementation of a rainbow-ladder truncation — i.e., an iterated gluon exchange, the
same mechanism which has been used to describe gg bound states — a direct numerical
solution of the relativistic Faddeev equation (4.2) was obtained.

The same premise can be implemented with less numerical effort in a quark-diquark
model. It treats such two-quark correlations as a separable pole sum in the gq scattering
matrix and leads to a description of baryons as bound states of effective quarks and
diquarks. In the simplest version of the model the nucleon is made of a quark and a
scalar (01) diquark whereas the A comprises a quark and an axial-vector (1) diquark.
A strong attraction in the color-antitriplet diquark channel has also been proposed to
explain missing exotic states in the hadron spectrum and the masses of light scalar
mesons [169,170]. Further support for the diquark concept has recently been drawn
from lattice calculations, cf. Table 5.2.

The simplest realization of a quark-diquark description of baryons is the Nambu-
Jona-Lasinio (NJL) model [171, 172] which allows for a formation of bound states
of quarks and point-like diquarks via quark exchange [173-178]. In this context it
was soon realized that axial-vector diquarks provide substantial attraction in the nu-
cleon and should be taken into account as well. An extension of the model to in-
clude diquarks of finite width led to a series of studies investigating nucleon and A
masses [61,179,180], nucleon electromagnetic form factors [62,63,99,181-185], and the
nucleon’s pseudoscalar, scalar and axial-vector form factors [184,186].

The present chapter extends the quark-diquark model insofar as the dynamics of 0T
and 17 diquarks are determined from their underlying quark and gluon constituents.
Parametrizations for the diquark amplitudes are removed and replaced by solutions
of the corresponding diquark Bethe-Salpeter equations. The identification of colored
diquarks as poles in the qq scattering matrix becomes possible within a rainbow-ladder
truncation: it induces timelike 07, 17, ... diquark poles whose mass scales play an
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important role in the description of light baryons. These poles, however, correspond
to unphysical asymptotic states and disappear from the spectrum when going beyond
rainbow-ladder. The quark-diquark BSE is derived from the relativistic Faddeev equa-
tion and will be applied to calculate the masses of N and A. The current-mass depen-
dence of these masses will be compared to lattice-QCD results, and we will discuss the
impact of chiral corrections.

5.1 The diquark ansatz for the ¢q scattering matrix

Faddeev equation revisited. As a first step in deriving the quark-diquark BSE from
the relativistic Faddeev equation (4.2), one introduces the Faddeev components ¥; of

the baryon amplitude via
3 3

v=Y KPv=>"u,. (5.1)
i=1 i=1
The ¥, are identical to the three graphs on the right-hand side of Fig. 4.1. Again, the
index i refers to the non-interacting spectator quark which contributes to each diagram.
The equation is subsequently rewritten in a way where the 2-quark scattering matrices
Ti(Z) appear instead of the 2-quark kernels K l-(2). They are related to each other through
Dyson’s equation (2.18) which entails

TP = (14T K = TPv=(1+T7) v, (5.2)
The relativistic Faddeev equation is thereby transformed into a set of coupled integral
equations for the components ¥;:

U =T (T - 0) =T (T, + Ty) (5.3)

(2 (2

where {4, j, k} is an even permutation of {1,2,3}. This equation is depicted in Fig.5.1.

No new information has been gathered by this transformation. Instead of directly
implementing an ansatz for the kernel in the original equation ~(5.1), the modified
version necessitates an expression for the ¢g scattering matrix 73 which must be
determined from the kernel in the intermediate step (5.2). In particular, the Faddeev
components ¥; are still three-body amplitudes which depend on three independent
momenta and carry the same Dirac structure as the amplitude ¥. A solution of the
equation relies upon the solution techniques described in Section 4.

An investigation of the structure of the T-matrix in this setup would certainly be
an interesting issue in itself. The basic intention of Eq. (5.3) is however to replace that
solution by an ansatz which is adequate to reduce the complexity of the equation, i.e.,
by simplifying the Faddeev approach to a two-body problem.
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FIGURE 5.1: Relativistic Faddeev equation (5.3) which involves the 2-quark scattering
matrix.

Diquark correlations. Up to this point we have assumed that correlations between
two quarks provide the dominant attraction not only in the meson but also in the
baryon channel; and that these are dominated by an iterated gluon exchange between
any pair of two quarks which constitute the baryon. In the following discussion we
will further exploit this concept and aim at an ansatz for the T-matrix which contains
diquark poles at timelike values of the total quark-quark momentum P? but still retains
some of the characteristic features of Dyson’s equation (2.18). This is realized through
a separable sum over diquark correlations. We restrict ourselves to the 07 and 1+
channels, i.e. to scalar and axial-vector diquarks for reasons explained below. The
corresponding expression for T’ 2) reads:

T 50,0, P) = > T (p, P) D) (P TV (g, P), (5.4)
(uv)

where the notation (uv) implies that the Lorentz indices can be dropped in the scalar-
diquark contribution. T'™ are the diquark analogues of the respective pseudoscalar
and vector meson amplitudes and the D) denote scalar and axial-vector diquark
propagators. The assumed poles of the T-matrix in the ansatz (5.4) are embedded in
the diquark propagators and define the associated diquark masses:

P2—>—M§V Tgy
2 27
P2+ M2,

P2 M2 1
2 2
P2+ Mg,

D(P?) DM (P?) (5.5)
where T%” again denotes a transverse projector, now with respect to the diquark mo-
mentum P. In the same manner as described in Section 2.3, this leads to a homogeneous
diquark BSE, I = KT, for a diquark bound-state on the mass shell P2 = —M? which
resembles the meson BSE given in Eq. (3.9). It was used for detailed studies of diquarks,

e.g., in [187,188]. The equation is shown diagrammatically in Fig. 5.2 and reads

M0, P) = [ Kenslp.a. P {S@)T@P)ST@)) o 60)
q
where the momenta have been defined in the discussion of Eq. (3.9). The replacements

S(—q-) — ST(q-) and K,y 53 — Kayps amount to a substitution of an antiquark-
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A

A

FIGURE 5.2: The Diquark BSE (5.6) in RL truncation.

with a quark leg. For the sake of consistency the kernel K is identified with the
rainbow-ladder kernel (3.11).

By working out the color traces of Egs. (3.11) and (A.34) one finds that the resulting
equation for I' C' with quantum numbers J¥ is identical to that of a color-singlet J %
meson except for the diquark’s coupling strength which is reduced by a factor of 2.
This confirms that the interaction in the color anti-triplet diquark channel is strong
and attractive. The same analysis entails that the interaction is strong and repulsive
in the color sextet channel [74,189]. Comparison with meson phenomenology hence
suggests that the lightest diquarks are the scalar diquarks (the parity partners of the
pseudoscalar mesons), followed by axial-vector, pseudoscalar and vector diquarks. This
was also observed in Bethe-Salpeter [187] and lattice studies studies (cf. Table 5.1) and
justifies the restriction to the scalar and axial-vector diquark channels for describing
light baryons composed of quark and diquark.

Diquark poles and diquark confinement. A necessary prerequisite to justify the
particular ansatz (5.4) is that the rainbow-ladder kernel, via (5.2), indeed generates
timelike scalar and axial-vector diquark poles in the quark-quark scattering matrix.
While this has not been explicitly studied in the context of Dyson’s equation, the
existence of a solution to Eq. (5.6) provides a satisfactory indication.

Asymptotic diquark states correspond to timelike poles in the diquark propagators,
hence one might suspect a violation of diquark confinement. However, the absence
of a Lehmann representation of a certain propagator is a sufficient but not neces-
sary criterion for confinement of the corresponding state due the associated violation
of reflection positivity [18,44,190,191]. Two-point correlations of colored fields may
contain real timelike poles in momentum space without contradicting confinement, a
statement which is also true for the quark propagator [45,192,193]. In addition, free-
particle quark and diquark propagators can yield quantitatively meaningful results for
hadronic observables (see, e. g., [184]).

On the other hand, the introduction of beyond-RL interaction terms in the skeleton
expansion of the ggq kernel which appears in the diquark BSE removes diquark states
from the physical mass spectrum due to large repulsive corrections [101,102,105,194].



5.1 The diquark ansatz for the gq scattering matrix 53

In this respect, kernels that do not produce diquark bound states but induce a more
complicated singularity structure in the qq¢ T-matrix can still support a physical inter-
pretation either in terms of mass scales or inverse correlation lengths of diquark inter-
actions inside a baryon. Further motivation for the significance of the diquark concept
has come from investigations of diquark confinement in Coulomb-gauge QCD [195].

Diquark masses. While diquark masses are gauge-dependent, gauge-independent
mass differences can be determined from lattice calculations. Several such investigations
have been performed in different approaches and with various fermion actions [196-201].
While they exhibit quite different quantitative results, the common qualitative feature
is that the mass splitting between scalar and axial-vector diquark in the chiral limit
is of the size of hundred to several hundred MeV (see Table 5.1) and decreases with
increasing current quark mass.

Fig. 5.3 shows scalar and axial-vector masses together with their mass and squared-
mass difference as a result of the diquark BSE (5.6). The diquark masses exhibit large
sensitivities to the width parameter w, a feature which has previously been observed in
Ref. [187]. The scalar—axial-vector mass splitting is comparatively weakly dependent
on model details, cf. Table 5.2. The deviation in the squared-mass difference between
setups (C1) and (C3) has its origin in the current-mass dependence of the scale Arg in
(C3) and can be removed by examining the ratio

Mgv B MSQC (3.22) m?r
My - M O (2, a2) + (1, — 12) 61
IR IR

Since AR is constant in setup (C1), a weak current-mass dependence (dashed line in the
upper right plot of Fig. 5.3) implies that the squared-mass difference is predominantly
generated by the infrared contribution to the effective coupling (3.14) which owes to
dynamical chiral symmetry breaking.

Offshell behavior of the T-matrix. Upon solving the scalar and axial-vector di-
quark BSEs (5.6), the quark-quark scattering matrix is determined at the diquark mass
poles P? = —M2 and P? = —M2,. Since the diquarks in the nucleon are off-shell, the
description of baryons as composites of quark and diquark requires knowledge of the
T-matrix for general diquark momenta as well. The ansatz (5.4) dictates its off-shell
behavior to be inherited from the separable structure in the vicinity of the poles in
terms of off-shell diquark amplitudes and propagators.

Given a certain ansatz for the off-shell amplitudes, one may exploit Dyson’s equation
(2.18) to obtain an expression for the diquark propagators. This procedure is detailed
in Appendix A.4 and yields propagators of the form

1

2\ _ 2
D(P?*) = R(P*) + 55—

(5.8)

where the finite parts R(P?) emulate off-shell contributions which are suppressed at
the mass poles but determine the ultraviolet behavior of the T-matrix.
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FIGURE 5.3: Left panel: Scalar and axial-vector diquark masses from the diquark BSE
vs. squared pion mass [113]. The bands denote a variation of w in setup (C3); the
central lines correspond to @. For comparison we show the (C3) input for m, (solid
line), together with its experimental value (star), lattice data and a chiral extrapolation
(dashed line). Respective references are given in Fig. 3.5. Right panels: Scalar—axial-
vector mass splitting (lower panel) and squared-mass splitting (upper panel). Dashed
lines are the results of (C1); bands those of (C3).

H Ar 77 | M My,
0.72 0.81 1.00
0.98 | 1. 8 1.08(10) | 1.35(8)

TABLE 5.1: Comparison of diquark masses M., M,, as obtained from the diquark
BSE in setups (C1) and (C3), characterized by the parameters Aig and 7 defined in
(3.19). A variation of n = 1.8 £ 0.2 in (C3) is equivalent to w ~ @ £ 0.06. The results
correspond to a current mass m = 6.1 MeV which is related to the physical pion mass
my, = 138 MeV. The units of A, Ms. and M,, are GeV; n is dimensionless.

(C1)
0.20

(C3) | Ref. [196]
0.27(3) | 0.10(5)

Ref. [197]
0.14(1)

Ref. [198]
0.29(4)

Ref. [199]
0.36(7)

TABLE 5.2: Scalar-axialvector diquark mass splitting in the chiral limit, cf. Fig. 5.3.
The BSE values are compared to several lattice-QCD results. The units are GeV.
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5.2 Quark-diquark BSE

Separable ansatz for the amplitudes. The relativistic Faddeev equations in the
form (5.3) represent coupled integral equations for either of the Faddeev components
W,. All elements of the equation, i.e., the dressed-quark propagator and the diquark
ingredients of the quark-quark scattering matrix, have been specified in the previous
sections. The separability of the diquark ansatz (5.4) for the T-matrix is one of two
requirements to reduce the original three-body equation for the baryon to a two-body
Bethe-Salpeter equation for a quark-diquark bound state. The second prerequisite is
the separability of the components ¥; in terms of the relative momenta between quark
and diquark (p) and within the diquark, where the latter is now denoted by p,, cf.
Fig. 5.4. This is realized via the following ansatz for the ¥;:

Vosys(p, pr, P) = ZF%W(Pr,pd) D(pq) ®%5(p, P), (5.9)
a,b

which involves a combination of scalar and axial-vector diquark amplitudes and propa-
gators. pg and P are the total diquark and nucleon momenta, respectively. The super-
scripts a, b, ¢ collect the diquarks’ Lorentz indices: a = 5 denotes scalar and a =1...4
axial-vector quantities; the diquark propagator D is either scalar (a = b=15) or axial-
vector (a,b=1...4). The Dirac, color and flavor decomposition of the quark-diquark
amplitudes @ ; (p, P) thereby defined is described in App. A.6. The final baryon am-
plitudes, as stated for the nucleon in Eq. (A.74), are constructed by symmetrizing the
Faddeev components in Eq. (5.9).

The spin- and isospin-1/2 nucleon is a sum of scalar and axial-vector diquark corre-
lations, whereas the SU(2) flavor algebra excludes scalar diquarks from participating
in the spin- and isospin-3/2 A baryon: only an isospin-1 axial-vector diquark can be
combined with an isospin-1/2 quark to obtain I = 3/2. The quark-diquark amplitude
®% thus appears in the following manifestations:

N: ®%(p,P) — ®°(p,P), d*(p, P),

A: %p,P) — DO"(p,P). (5.10)

The final N and A quark-diquark spinors are obtained upon contraction with the Dirac
and Rarita-Schwinger spinors us(P), uj(P) which describe free spin—1/2 or -3/2 particles
with momentum P:

N q)zzs(pap)ué(P)? CI)Z(S(p?P) Ug(P),

A: @, P)u(P). (5.1

Two-body equation. Inserting the ansatz (5.4) for the T-matrix together with (5.9)
into the relativistic Faddeev equation (5.3) yields a quark-diquark Bethe-Salpeter equa-
tion on the baryon’s mass shell [180, 184]:
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FIGURE 5.4: The quark-diquark BSE (5.12) in pictorial form.
25(p, P / K“b (0, k, P) S(k,) @C(k,P)}aﬁ D¥(ky), (5.12)
k
where the kernel of the equation is given by

Ko,k P) = {T (k. ka) S"(@) T (or. —pa) - (5.13)

It couples scalar and axial-vector diquarks (i.e., a = 1...5) in the case of the nucleon
whereas only the axial-vector index a = 1...4 is required for the A. The kernel (5.13)
describes an iterated exchange of roles between the spectator quark and the quarks
which constitute the diquark; this quark exchange generates the attractive interaction
that binds quarks and diquarks to a baryon.

The momenta in Egs. (5.12-5.13) read (cf. Fig. 5.4):

q=pd—kq,
=p+nP,  pa=-p+(l-n)P, N
kr=(1—-0)p;—oq, (5.14)
kg=k+nP, kqg=—-k+(1—n)P,
=(1-0)ky—o0gq.

p and p, are the relative momenta between quark and diquark and within the diquark;
pg, P are total diquark and nucleon momenta. The respective momenta k appear
inside the loop integral. Again, the momentum partitioning parameters o, n € [0, 1] for
diquark and quark-diquark amplitudes are arbitrary. In contrast to the analogous case
in the three-body equation, n = 1/3 is no longer the optimal choice since the pole limits
now result from the combined singularity structures of quark and diquark propagators
(and, theoretically, also of the diquark amplitudes). We set ¢ = 1/2 but keep 7 as a
variable since it can be used to ease these constraints (cf. App.B.3).

Upon working out the color and flavor factors of the quark-diquark amplitudes,
given in Egs. (A.87) and (A.92), and of the diquark amplitudes (A.34), the BSE kernel
picks up a color-flavor factor

N ;(\_/% V?) A <8 _(1)) (5.15)
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where the first row (column) represents the scalar part of the kernel and the second
row (column) the axial-vector part.

5.3 Nucleon and A masses

The results of the quark-diquark BSE (5.12) for nucleon and A masses in the 'quark
core’ setup (C3) are shown in Fig.5.5. The left panel depicts the calculated values
for m,, My and Mx, each together with a selection of lattice results and their chiral
extrapolations (if available). The corresponding abscissa values m?2
the pseudoscalar meson BSE. The solid curve for m,, is the input defined in Egs. (3.15—
3.17) and completely fixes the parameters in the interaction. The bands represent
the sensitivity of the results for My and Ma on the width parameter w. At larger
quark masses the deviation from the lattice data diminishes, in accordance with the
assumption of Eq. (3.15), namely that beyond-RL corrections to hadronic observables
become small in the heavy-quark limit.

The resulting values at the physical pion mass in both setups (C1) and (C3) are
displayed in Table 5.3. Again, Eq.(3.22) can be used to relate both models to each
other. The intention of the former was to reproduce m and p properties; in addition,
the model also yields N and A masses that are close to the experimental values. This
is quite remarkable since, upon fixing the coupling strength in the effective quark-gluon
coupling to meson phenomenology, no further parameters have been used as an input
of the calculation.

A comparison with the results of Section 4.4, obtained through a solution of the
relativistic Faddeev equation, shows that the corresponding nucleon mass is larger
than the result of the quark-diquark approach. Fig. 4.4 indicates an approximately
uniform shift by 50 — 100 MeV throughout the examined current-quark mass range.
This illustrates that the quark-diquark approach is somewhat too attractive in the
nucleon channel but still a quite reasonable approximation.

are obtained from

Pionic corrections. It is instructive to compare our results to baryonic core masses
estimated from chiral effective field theory. In this framework the mass of a baryon B
is obtained from the expression (e.g., [58])

Mp(m3) = ME"™(m7, A) + Ep(mz, A), (5.16)

where the ”"baryon core” includes the bare (and a priori unknown) parameters a; ap-
pearing in the effective Lagrangian:

Mz, A) = aly) (A) + a (A) m +al (A m +. (5.17)

The inherent assumption of a momentum cutoff regularization, expressed through the
scale A, allows for a physical interpretation in terms of a scale separation between quark
core and pion cloud. The cutoff A regularizes the short-distance divergences associated
with pointlike baryons and pions in the effective field theory and retains the long-
distance or low-energy part of the self-energy integrals. A non-pointlike nucleon-pion
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FIGURE 5.5: Evolution of N and A masses (left panel) and the mass splittings Ma —
My and My, — Mg (right panel) vs. pion mass squared [113,202], obtained in the quark-
diquark model using setup (C3). The bands denote the sensitivity to a variation of
w. We compare to a selection of dynamical lattice data and their chiral extrapolations
(dashed lines) for My [166-168] and Ma [203]. The depicted data for m, are identical
to those of Figs. 3.5 and 5.3. Stars denote the experimental values.

AR n My Ma
Exp. 0.94 1.23
(C1) [ 072 | 18 0.94 1.28
(€3) || 098 | 1.8(2) || 1.26(2) | 1.73(5)

TABLE 5.3: Comparison of My and Ma for both model inputs (C1) and (C3) at
the physical point. The parameter 7 is defined in (3.19). The first row quotes the
experimental values. The units of Ajg, M. and My, are GeV; 7 is dimensionless.

—o0— = + - -+ +

FIGURE 5.6: Expansion of the nucleon propagator in chiral perturbation theory.
Dashed, solid, and thick solid lines correspond to pseudoscalar-meson, nucleon and
A degrees of freedom.
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interaction requires a cutoff of the order of the baryon size (A > 0.2 GeV ~ r < 1 fm).
Of course one may alternatively employ a dimensional regularization technique [204].
Y p in Eq. (5.16) denotes the sum of meson-loop self-energies, e.g. to 1-loop order
the sum of intermediate Nm and Am states (cf. Fig.5.6). In heavy baryon chiral
perturbation theory [205,206], the respective contributions are given by [58,207]:

32 w

Sn(mz, A) = —)\Ag/diﬂ 2 [U%VN(%) T o5 W U%VA(x)] )

(5.18)

Ya(m2,A) = —\A3 d:lcgg—4 u’ (ac)—i—ﬁLu2 (x)
ANy - w2 AA 25 w—6 NA )

where z, w(x) and ¢ are pion momentum, intermediate pion energy and the physical
N—-A mass splitting, normalized by the cutoff A, and the prefactor A includes the
experimental values for the pion decay constant f; = 131 MeV and the axial coupling
g4 = 1.26:

k My 2 0.29 GeV 3924
2 s
r=—, wx) =\/z +<—> , 0=—— )\——8 22 (5.19)

The cutoff-dependent NN, AAm and NA7 vertex dressings are denoted by ugp/(z).
A dipole form factor mimics the physical shape of the meson-baryon vertex. Choosing
all dressings identical via u(z) = (1 + 22)~2 with a regulator A = 0.8 GeV yields for
my = 140 MeV:

Sy =-0.30GeV, Xa=-0.27CeV, (5.20)

and hence a similar reduction of both nucleon and A masses. In combination with the
experimental numbers for My and Ma, (5.20) provides the simple estimates

ME™ ~1.24GeV, ML ~1.5GeV. (5.21)

These values are roughly consistent with those obtained in, e. g., the cloudy-bag model
[208], NJL model [209], and nucleon-pion Dyson-Schwinger studies [61,210] and make
clear that nucleon-pion loops are attractive and the binding energy reduces the baryon’s
mass.

The separation into a ”core” and a "meson cloud” contribution is cutoff-dependent.
Due to the approximate A3-dependence of the self-energy integrals, different values of
the regulator can vary the above results considerably. Naturally, the chiral extrapola-
tions of the physical N and A masses depicted in Fig. 5.5 must be independent of the
cutoff A. Via expansion in m2, the self-energy contributions ¥ p are split into cutoff-
independent non-analytic terms ~ m2, ~ m2Inm, and cutoff-dependent terms that
are even in m2 [168,211,212]. The latter are combined with the bare parameters ag)
to renormalized coefficients such that the chiral expansion of My and Ma reads [213]

T

Mp(m?) = (MB(O)—I—cg)mfr—i—cg) mfr—i—...) + (cg) mi—f—ch)mi lnmﬁ—l—...),
@ _ () _ AT @ _ 32 3A @y _ 8 3A

- =2 S . 22
N T 9 N T o58(AM) DA 95 8(AM) (5:22)
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It is expressed in terms of renormalized low-energy constants Mp(0), cg) and cg) which
may be determined by a fit to lattice data [58,168]. Through this renormalization
procedure the regulator dependence is removed [204,214].

Discussion. The previous considerations illustrate that both the quark-diquark model
and the three-body result for My in the ’core’ setup (C3) are roughly consistent with a
pseudoscalar-meson dressing providing the dominant correction to the nucleon’s quark
core. In particular, it complies with the assumptions which motivated the introduction
of (3.15) in the context of pion and p-meson observables.

Nevertheless one has to keep in mind that the identification of the baryonic quark
core (5.21) with the quark-diquark or three-quark ’core’ is more complicated than in
the meson case. Eq. (3.15) assumes that corrections to m, are partly induced by a
pseudoscalar-meson cloud and to a similar extent owe to non-resonant corrections to
RL truncation. In the baryon one has additional lines of improvement: an inclusion of
irreducible 3-body interactions, which were neglected in the derivation of the Faddeev
equation (4.2), can still describe a quark core in the sense of Eq. (3.15). Morever it
is conceivable that contributions beyond rainbow-ladder induce different ramifications
for m, and My.

An interpretation of the quark-diquark result for Ma is more difficult. In view
of Eq. (5.21), the solution depicted in Fig. 5.5 indicates larger corrections beyond the
quark-diquark approach than encountered for the nucleon. The M solution addition-
ally exhibits a sizeable w dependence, a feature which is less pronounced in m, p and
nucleon observables. The scalar and axial-vector diquark masses exhibit particularly
large sensitivities to w (see Fig. 5.3) which apparently cancel upon constituting the
nucleon mass. In the Ma case, the same consideration could suggest that taking into
account only an axial-vector diquark may not be sufficient for describing the A, and
that a possible further isospin-1 (tensor) diquark component with a mass large enough
to be irrelevant for the nucleon could diminish the A ’core’ mass. In this respect it
is highly desirable to extend the three-body study of the nucleon to the A. Such a
framework automatically implements the effect of inserting further diquark channels
which could affect N and A properties differently.

The right panel of Fig. 5.5 displays the N-A mass splitting. According to (5.20),
the pseudoscalar meson contribution to the experimental value Ma — My = 0.29 GeV
is small and positive: ¥a — Xxn = 0.03 GeV, cf. Ref. [58]. This is not the case in
our calculation, where at the u/d mass (Ma — Mpy)®"® = 0.48(4) GeV and therefore
predicts a negative correction to the full splitting.

We also compare Ma — My with the diquark mass splitting M,, — M.. Both
decrease with increasing current-quark mass; nevertheless there is no direct relationship
between the two quantities, since the axial-vector diquark contribution to the mass of
the nucleon does not vanish [202].



Chapter 6

Nucleon:
Electromagnetic form factors

The nucleon’s charge and magnetization structure is encoded in its electromagnetic
form factors which, for space-like values of the photon momentum, are experimentally
determined via elastic nucleon-electron scattering. Nucleon electromagnetic form fac-
tors have been studied in a variety of approaches; an overview on the experimental and
theoretical progress can be found in the recent review articles of Refs. [215,216].

The results presented in this chapter are rooted in a long tradition of nucleon
form factor studies within the quark-diquark model [99,181-185]. These calculations
share some common caveats. First, pionic contributions play an important role in the
low-energy and small-quark mass behavior of the nucleon’s electromagnetic structure.
Such effects are not included in a quark-diquark ’core’ and must be added on top of
it [61-63,210]. Second, access to the large-Q? region and thereby to the truly pertur-
bative domain is so far only feasible upon implementing pole-free model propagators
which, in turn, exhibit essential singularities at timelike infinity. The problem is not
of fundamental concern; it merely awaits a thorough numerical treatment. Third, the
quark-mass dependence of magnetic moments and charge radii, while emerging natu-
rally in lattice calculations, is practically inaccessible in a quark-diquark model due to
the unknown mass dependence of the modeled ingredients.

The rainbow-ladder based quark-diquark approach, introduced in Chapter 5, re-
moves the latter obstacle. Upon resolving the diquarks’ substructure, the form factors
are immediately related to the parameters in the effective quark-gluon coupling a(k?),
in particular: its quark-mass dependent coupling strength. In the following we will
restrict ourselves to the quark 'core model’ which represents a quark-diquark core that
needs to be dressed by meson-cloud effects. A comparison of the core’s static properties
with lattice results is appropriate at larger quark masses; form factors depending on the
photon momentum may be compared to experiment at Q? > 2 GeV? where pion-cloud
effects are diminished.
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6.1 Electromagnetic current

Nucleon-photon vertex. The vertex which describes the coupling of the nucleon as
a spin-1/2 fermion to a photon is constructed from 12 Dirac covariants:

{7y P QMY <AL, P @, [P} (6.1)

where the Breit momentum P and photon momentum () are combinations of incoming
and outgoing nucleon momenta:

1

P
2

(P+P), Q=P —P. (6.2)
A nucleon on the mass shell satisfies P? = PJ? = —M? and therefore P? = —M? —(Q?/4
and P - @ = 0; hence the only independent variable is the photon momentum-squared
Q?. The nucleon’s electromagnetic current J*(Q?) is obtained by sandwiching the on-
shell vertex by the nucleon spinors U?(Py), U%(P;) of Eq. (4.25) which are solutions of
the Dirac equation:

Ap(P)U(P) =U(P),  U°(Pp)Ay(Pp) =T"(Py). (6.3)

Equivalently, one may construct a matrix-valued current by taking the spin sums, i.e.,
by contracting the vertex with the positive-energy projectors

rr) =3 (14 B0 = S v 0. (6.4
a=1

They reduce the 12 basis elements to three: {v*, P* Q"}. Current conservation
Q"J*(Q?) = 0 eliminates the structure Q" via Ay (Pf) QA (P) =0 and Q- P = 0.
The most general electromagnetic current of the nucleon is therefore given by

7M@) = ) ((F + B i = B ) M), (6.5)

thereby defining the Dirac and Pauli form factors Fj(Q?) and F(Q?). Using the
Gordon identity
g, EoQY PR N
AL (Py) <w H L P s py =0 (6.6)

with o#” = —% [y#,4"] transforms Eq. (6.5) into:
% . F2 . v AW
Q%) = Av(Pp) (Fuin = 2 i0mQ" ) A (Py). (6.7)

Fy and Fy are dimensionless; for Q% = 0 they reduce to the proton and neutron charges
Apn = {1,0} and anomalous magnetic moments &y, ,,, expressed in nuclear magnetons
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eh/(2M). Charge conservation Fj(0) = A is automatically satisfied if the nucleon
amplitudes are canonically normalized via Eq. (2.24) [183].

Electromagnetic current of a composite system. To relate the electromagnetic
current of Eq. (6.7) to the underlying description of the nucleon as a composite object,
the baryon must be resolved into its constituents to each of which the current can
couple. The construction of an electromagnetic current operator in the framework of
the Bethe-Salpeter equation was first treated by Mandelstam [217]. In the same way
as an n-particle T-matrix reduces to the form (2.21) at the bound-state pole with mass
M, thereby defining the bound-state amplitude, the electromagnetic current matrix J*
is the residue of the (2n 4 1)—point function T* which describes the photon’s coupling
to the T-matrix at the bound-state mass:

P2 (M?+Q2/4) ) Uy JH;
T — . 6.8
ey o
The Breit momentum P is defined in (6.2) and yields at the hadron pole:
(P} + M?)(P? + M?) = (P? + M? + Q*/4) = 0. (6.9)

A systematic procedure for the construction of a hadron-photon vertex based on
electromagnetic gauge invariance is the ”gauging of equations” prescription [218-220)]
which represents a generalization of the normalization condition in Eq. (2.24) to finite
photon momenta. In this context, ”gauging”, formally denoted by T — T*, is a
derivative: it is linear and satisfies Leibniz’ rule. The gauged n-quark scattering matrix
satisfies

T"=-T(T"Y'T=-T(K'-G)'T=T(Gf+K 'K'*K )T, (6.10)

where, according to Section 2.3, K is the interaction kernel, Gy is the product of
n propagators, and Dyson’s equation has been implemented. The gauged T-matrix
depends on incoming and outgoing total momenta P;, Py (or, equivalently, on P and
Q) and two further relative momenta which are not relevant for the following discussion.

Eq. (6.10) entails in combination with the pole behavior (2.21) and the bound-state
equation ¥ = KGyV:

PP (M24Q%/4) o Uy VAP
T N GH + Gy K" Gy) ——— 6.11
and comparison with (6.8) yields
JH =T (TN = —Tp (G + Go K* Go) T; . (6.12)

The impulse approximation G involves, e.g., the quark-photon vertices (—S ~1)# where-
as K* represents the photon’s coupling to the kernel K. For instance, in the case of
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FIGURE 6.1: The two types of diagrams which contribute to the nucleon’s three-body
current in rainbow-ladder truncation, Eq. (6.16)

a two-body system with a rainbow-ladder kernel, K does not depend on the total
momentum, hence K# = 0: the electromagnetic current of a meson consistent with
a rainbow-ladder truncation is an impulse-approximation current. This is no longer
true for a baryon, either described in terms of three valence quarks or a quark-diquark
system.

For vanishing photon momentum, 'gauging’ is the derivative with respect to P*:

dT

_ AT, dT
Q2%2—0 dPH

TH -
dP?

= 2P T (6.13)

Comparison with the normalization condition N W (T‘l),\Il = 1 of Eq. (2.24) yields
NJ#(0) = 2P* (modulo the bound-state wave functions, e.g., the nucleon spinors).
Examples for this relation are given in (A.46) for the pion’s electromagnetic current
(N =1) and (6.7) for that of the nucleon (N = 2M). At the level of the bound-state
constituents which contribute to the total current this relation is ensured by differential
Ward identities.

Three-body approach. The kernel which appears in the bound-state equation of a
baryon described by three valence quarks (cf. Section 4) is given by

3
KE® = k® 4 3 K51, (6.14)
i=1
The corresponding gauged kernel reads
3 3
(£0)" = (&R) + (&) 057+ xP o (s7)" . ©15)
i=1 i=1

Neglecting the three-body irreducible contribution and using a rainbow-ladder two-
body kernel therefore leads to the electromagnetic current

3
Gh+Go Y KP @ (571" G

=1

JH = Ty v, (6.16)
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which is depicted in Fig. 6.1. We will not further investigate this equation in the present
work and focus instead on the respective current operator in the quark-diquark model.

Diagrams in the quark-diquark model. The general discussion of the last section
applies to the quark-diquark model as well. In this context, the incoming and outgoing
baryon states are described by quark-diquark amplitudes ®;, ®; introduced in Eq. (5.9).
Upon interaction with the external current, the baryon is resolved into its constituents:
quark and diquark and the interaction between them to each of which the current can
couple [183].

In the context of Eq. (6.12), T is the quark-diquark scattering matrix, Go = S D the
product of a dressed quark and diquark propagator, and K = I' ST the quark-diquark
kernel describing the quark exchange. The quark-photon and diquark-photon vertices
are defined as the gauged inverse propagators: Iy := — (S71)" and ng = — (D~H".
The gauged diquark amplitudes I'* =: M*, also referred to as seagull vertices, describe
the photon coupling to the diquark amplitudes. The ingredients of the current matrix
are then written as

Gy = (SD)" = (ST!S)D+ S (DT, D),

_ _ _ _ (6.17)
K'=(TST)"=M'ST+T (STHS)T +T SM".
These diagrams are worked out in detail in App. A.9 and illustrated in Fig. 6.2.
By virtue of Eq. (6.17), the electromagnetic current of a baryon in a quark-diquark
framework is completely specified by identifying the quark-photon vertex, the scalar
and axial-vector diquark-photon vertices and an ansatz for the seagull terms. These
quantities are constrained by Ward-Takahashi identities and thereby related to quark
and diquark propagators and diquark amplitudes which have already been determined
previously. The corresponding vertices are collected in Apps. A.1, A.7 and A.8.

6.2 Electromagnetic form factors

Sachs form factors. Defining 7 = Q?/(4M?), the correspondence between the electric
and magnetic Sachs form factors to the Dirac and Pauli form factors which appear in
(6.7) is given by

Gg=F —15 — Fl:GE+TGM
Gu = Fi + Fy T+7

Fy = GM =GB

1
. B s (6.18)

They can be extracted from the current via

2
%Tr{J“P“} :PMGE, %Tg”Tr{J“ify”}:TGM. (6.19)
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FIGURE 6.2: The five diagrams that constitute the nucleon’s electromagnetic current
in the quark-diquark model, corresponding to Eq. (6.17).

Unless further specified, the symbol F(Q?) denotes a generic form factor in the following
discussion, either Dirac/Pauli or Sachs. The electromagnetic radius rr corresponding
to F(Q?) is defined as the slope at zero momentum transfer via the Taylor expansion

2 dF

F(Q*) = A — %Fcf ... = 12=-6 07 , (6.20)
Q=0
F(Q2) _ 7"% 2 2 _ 6 dF

where F(Q?) in the first row denotes an ’electric’ form factor (F} or Gg) with the
electric charge F'(0) = A, in the second row a 'magnetic’ form factor (F», Gjs) with
the (anomalous) magnetic moment F'(0) = x or p such that G/ (0) = p = A+ k. With
Eq. (6.18) the correspondence between Sachs and Dirac/Pauli radii is

r? + K13

6.22
1+k ( )

2 _
"M = ;

where the second term in r% involving the anomalous magnetic moment is the so-called

Foldy term. Experimental values for electromagnetic radii and magnetic moments are
collected in Table 6.1.
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2 [ N I I T N
P = 0.886(15) | K, =1.793 | ¥ =0.82(2) | (r)? = 0.68(3)
(r)? = —0.115(4) | kn = —1.913 | 77 = 0.11(2) | (%)% = 0.65(3)
P =0.855(35) | ke = —0.120 | 5 =0.88(6) | (r5)* = 0.78+2
o= 0873(11) | Ky = 3.706 | % = 0.88(1) | (ry)* = 0.77(6)

TABLE 6.1: Experimental numbers for radii and magnetic moments. The radii in
the left column are quoted from Table 1 of Ref. [225]; for references, see therein.
Magnetic moments are the PDG values [226]. The remaining quantities are inferred
from Egs. (6.18) and (6.39), ignoring possible correlations between the statistical errors
of the data.

Form factors are Lorentz invariant, but their interpretation depends on the reference
frame. Nonrelativistically, the Sachs form factors G;(Q?) are the three-dimensional
Fourier transforms of the nucleon’s spatial charge and magnetization distributions pg,
pm in the Breit frame where the energy of the transferred photon is zero [221]. In this
case the interpretation of the inferred Sachs radii as charge and magnetization RMS
radii is valid:

2 :47T/d7“pch(7“) 2, :47r/drpm(r) rt )\:47r/d7"pch(r) r?,  (6.23)

where A is the nucleon’s electric charge. Relativistic boost corrections obscure this
interpretation, and the extraction of these densities from experimental form factor
data becomes model-dependent [215,222]. Such analyses implicate a positive central
charge density of both proton and neutron [223], in agreement with the notion of the
neutron being sometimes a proton surrounded by a negatively charged pion cloud.
On the other hand, the Dirac form factor F;(Q?) non-ambiguously corresponds to
the nucleon’s transverse charge density in the infinite momentum frame [224], and the
experimentally observed negativity of FJ*(Q?) induces a negative central charge density
of a fast-moving neutron. It has been argued in Ref. [113] that a negative Dirac form
factor for the neutron can be explained in the context of a quark-diquark model which
includes axial-vector diquark degrees of freedom (see also Section 6.3).

Form factor measurement. Electromagnetic form factors are experimentally studied
via elastic nucleon-electron scattering. Due to the smallness of the electromagnetic fine-
structure constant o = 1/137, the Born approximation which describes the scattering
process in terms of a single exchanged photon has been commonly employed. The
scattering off a spin-1/2 target with extended structure and an anomalous magnetic
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moment is then given by the Rosenbluth cross section [227]:
do _ (do 6G2E+TG?V[’ (6.24)
dQ dQ ) oy €L +7)

where the prefactor represents the Mott cross section of a spin-0 point particle, € € [0, 1]
is the virtual photon polarization, and # the scattering angle:

d 2F' cos?6/2 1
<‘7> _ o BleosT0/2 — (6.25)
dQY ) \iore 4 E3sin®6/2 1+2(1+7) tan6/2

E and E’ are the initial and final electron energies. The Sachs form factors are extracted
from the ¢ dependence of the quantity € G% +71 G3; at fixed Q* which entails a reduced
sensitivity to G%, at large @Q? and G at small photon momenta. Measurements of the
neutron form factors, carried out via electron-deuteron scattering due to the lack of a
free neutron target in nature, suffer from systematic uncertainties.

Recent polarization-transfer experiments allow for an increased accuracy through a
direct extraction of the form factor ratio Gg/G s via [228]

Gg  PE+F
Gy P 2M

tan /2, (6.26)

where P, and P; are the longitudinal and transverse polarization components of the
recoil proton, transferred from the longitudinally polarized electron.

Surprisingly, the corresponding measurements [229-231] indicated a linear decrease
in that ratio with increasing @2. This is incompatible with the result obtained by the
Rosenbluth separation technique where the ratio is roughly ~ 1 (both are compared in
Fig. 6.10). The discrepancy is currently believed to originate from two-photon exchange
corrections which have a minimal impact upon the polarization results but significantly
affect the Rosenbluth cross section [232,233].

Phenomenological aspects. Dimensional counting rules of perturbative QCD pre-
dict the following behavior of the Dirac and Pauli form factors at large photon momen-
tum transfer [234]:

Fi~1/Q%, Fy~1/Q5%, Q* F»/F| ~ const., (6.27)

where logarithmic corrections [235] have been neglected. Correspondingly, the Sachs
form factors scale as Ggar ~ 1/Q*, which implies that the ratio Gg/G s becomes
constant. In this respect, dipole-like parametrizations for the Sachs form factors were
found to provide a reasonable description of the experimental data:

9i(Q%

Gi(Q%) = ma

A =0.84GeV, (6.28)
with ¢;(Q?) = const. except for the neutron electric form factor where the Galster
parametrization [236] g% (Q?) = —u,7/(1 + 5.6 7) has been frequently employed to fit
the data.
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The deviation from the dipole form, expressed through the dependence of the re-
mainders g;(Q?) on the photon momentum, is nevertheless sizeable for Q% > 2 GeV?2.
It is especially pronounced in the electric form factor of the proton: the polarization-
transfer data for the form factor ratio G%,/G%, (so far only available for Q2 be-
low 6 GeV?) show a linear fall-off in Q? and even point towards a zero crossing at
Q? =~ 8 GeV?, implying the presence of a further small scale ~ 0.07 fm. The dis-
crepancy between the perturbative prediction and the experimental data has been
attributed to the presence of non-zero quark orbital angular-momentum content in the
proton [185,237,238]. Possible evidence for an onset of the perturbative scaling can be
observed in the G4, data above Q* ~ 10 GeV? [215].

Pion-cloud effects are expected to play an important role in the form factor struc-
ture below Q? ~ 2 GeV2. Such contributions are suppressed at large Q? where the
photon probes the nucleon’s quark core. Attempts have been made to attribute low-Q?
systematics in the form factor data to pionic effects, e.g. through a phenomenological
double-dipole fit [239], in a dispersion-relation approach [240], or via implementation
in a chiral quark model [3]. In analogy to the discussion of the pion’s charge radius in
Chapter 3.3, pion-loop contributions are believed to provide sizeable additions to the
nucleon’s quark core radii and magnetic moments, where the overall strength of these
effects can be estimated from chiral perturbation theory.

Flavor contributions to form factors. Proton and neutron form factors can be
combined to study the flavor dependence of the nucleon’s charge and magnetization
structure. Each diagram of Fig. 6.2 can be split into terms where the photon either
couples to a u or a d quark inside the nucleon. The form factors (again generically
denoted by F') are therefore linear combinations of these u- and d-quark contributions:

1 1

PP = 2, F) + q F} = < (4F) — F}) = < (4F" = F?) ,

3 3 (6.29)
2 2/ :

F" = g, F + 200 Ff = 5 () = Fj) = 5 (F' = F")

where because of charge symmetry the u(d) contribution in the proton equals the d(u)

contribution in the neutron:

F“:=F°=Fy, F'=F'=F]. (6.30)

The definition (6.29) implies F%(0) = F%(0) = 1 for the 'charge’ form factors Fy and
G g which entails
2 2 1 2 2 2 2
(r)” = ()" + 5 (1), (rf)" = (D) +207) (6.31)
for the charge radii. The flavor contribution to the magnetic form factors Fy, Gy is
usually separated via p* = 2 ¢, FZ(0), pg = qq F}(0), and charge symmetry implies

1

pp =ttt = =2p = ot (6.32)
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The contribution from strange quarks, implicit in the seaquark content, is missing
in Eq. (6.29) since we are working in isospin-SU(2). Nevertheless it has been argued
that the present world data are consistent with the proton’s strange form factors being
zero [241]. Under this assumption one may extract the u and d contributions from the
experimental quantities. Using the values of Table 6.1 yields:

rt=0.82(2)fm, r{=0.83(2)fm, p*=244, p®=0.34. (6.33)

6.3 Results and discussion

This section provides results for the nucleon’s electromagnetic form factors in the quark-
diquark calculation where the current is constructed from the diagrams in Fig. 6.2.
Apart from the ingredients which have been determined in previous chapters (nucleon
amplitude, Section 5.2; quark propagator, Section 3.1; diquark amplitudes and prop-
agator, Section 5.1 and the respective appendices), the calculation involves a quark-
photon vertex (App. A.2) and the effective diquark vertices (Apps. A.7 and A.8). Each
vertex satisfies a Ward-Takahashi identity which, in total, ensures conservation of the
nucleon’s charge: F¥'(0) =1, FJ*(0) = 0.

Form factor contributions. In Fig.6.3 the proton’s and neutron’s electromagnetic
Sachs form factors at the physical point are compared to experimental data. The main
difference between the results presented herein and those of Ref. [129] originates from
the inclusion of the p-meson pole in the quark-photon vertex, cf. Eq. (A.28). In accor-
dance with its effect on the pion charge form factor [60,83], it reduces the form factors
and contributes 50% to their charge radii. Specifically, it cancels the previously positive
result for G, to zero (within the considered domain of the w parameter). Note that the
form factors in terms of the underlying quark-photon and diquark-photon vertices are
well constrained up to Q% ~ 2 GeV?; the arbitrariness introduced in connection with
the transverse seagull term of Eq. (A.138) becomes important only at larger photon
momenta.

Fig. 6.5 depicts the contributions to the form factors G} and F4"™" from the quark-
photon coupling, the diquark-photon coupling, and the exchange and seagull diagrams.
The strongest contribution at Q2 = 0 is the direct coupling of the photon to the quark
line. This feature may change with the Q? evolution: for instance, the quark-photon
contribution to G%, exhibits a zero crossing at Q*/M? ~ 2 which was observed in the
model of Ref. [63] as well. The diquark contribution to the magnetic form factors (in
particular, the scalar—axial-vector transition) provides only a small fraction of the total
result. The unit charge of the proton results from the canonical normalization of the
quark-diquark amplitude. Current conservation ensures a vanishing neutron charge in
terms of a cancelation of the components in G5 at Q*=0.

The relative strengths of the scalar—scalar, axialvector-axialvector and scalar—axial-
vector components, according to the type of the incoming and outgoing nucleon ampli-
tudes, can be read off from Fig. 6.6. The dominant contributions are provided by the
scalar-diquark contributions.
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FIGURE 6.3: Results for the Sachs form factors at the physical point. The selection of
experimental data is based on Ref. [239] (data compiled by P. Grabmayr). The bands
correspond to a variation of w in setup (C3).
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F1GURE 6.5: Individual contributions to Gg and F5 according to Fig. 6.2. Depicted
are the form factor sum (SUM), photon-quark (Q) and photon-diquark coupling (DQ),
and the combined exchange and seagull terms (EX + SG). The strength of these con-
tributions in the remaining form factors can be extracted from the plot via Egs. (6.18),
(6.39) and (6.29): F} = Gg+7F, and Gy = Fy + Fy; for the isoscalar/isovector combi-
nations: s = p+n, v = p—n; and the up- and down-quark contributions: v = p+n/2,
d = p+ 2n. The w variation is identical to Fig. 6.3.

Comparing to experimental and lattice data. Since the nucleon mass as a
result of the quark-diquark calculation usually deviates from its experimental value
Mexp = 0.94 GeV, some precaution must be taken when comparing form factor results
to experimental data. There are basically two scales which enter the electromagnetic
current and form factors: the photon momentum Q? and the nucleon mass M, the
latter of which absorbs both the inherent scale Ajg and the current-quark mass de-
pendence of the system. As form factors are dimensionless they can only depend on
the combination Q%/M?. This is accounted for in Figs. (6.3-6.6) where the results are
plotted as a function of this dimensionless variable.

The same effect is achieved by an appropriate rescaling of the photon momentum

Q’ Q?
(W>calc N M2, (634)

exp
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and axial-vector—scalar contributions (M).

Presenting results as a function of @2 removes the trivial scale dependence induced
by the overestimated quark-core result for M. When investigating the current-mass
dependence and comparing to lattice-QCD results, the experimental mass in Eq. (6.34)
should be replaced by that obtained from the lattice: My, — Mi,;. This affects the
comparison of charge radii as well: instead of comparing the dimensionless combinations
r% M? (e.g., as in Ref. [113]) we rescale the radii accordingly,

(r*M?) . = M, (6.35)
and plot the quantities 72 instead of 72. These issues were not relevant in the context
of pion observables f, r, in Chapter 3.3 since the mass of the pion is not expected to
drastically change upon implementing beyond rainbow-ladder contributions.

A second remark concerns the comparison of magnetic moments to lattice-QCD
results where Fy and Gy are usually expressed in terms of experimental (i.e., fixed in-
stead of current-mass dependent) nuclear magnetons [59]. The corresponding quantity
which appears in the electromagnetic current (6.7) is Fy/ (2Mexp). Again, our calcu-
lated result for F, (the value in units of 'running’ magnetons) is dimensionless, hence
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we leave it unchanged but remove the current-mass dependence when comparing to

lattice data via _
F F
2 =2 (6.36)
2M calc 2Mphys

calc

where Mfalgs is the calculated nucleon mass at the physical u/d point.

Magnetic moments. The results for the nucleon’s magnetic moments at the phys-
ical u/d mass are collected in Table 6.2. The current-quark mass dependence of the
anomalous magnetic moments kp, Ky, is shown in Fig. 6.7. At large quark masses,
where possible pion-cloud effects should be diminished, the result still overestimates
the lattice data. This suggests further missing corrections beyond pionic contributions.

In analogy to the discussion of the nucleon mass in Section 5.3, the pion-cloud
effect to magnetic moments can be quantified by examining the loop contributions in
heavy-baryon chiral effective field theory:

ppa(mz) = ppone (mz, A) + iy (m3, A) (6.37)

Retaining only those loop diagrams which describe a direct coupling of the photon to
the intermediate pion, where the accompanying baryon is either a N or a A, yields
[242,243]:

AMNC>o xt C? w(w+26
:U'}X?:,n(m?ru A) =+ 3772f2/dx o [9,24 uiy (@) + o (EH_(S)Q) uia ()] (6.38)
"0

where C' = —2-(0.76), and the remaining quantities are explained in the context of
Eq. (5.18). Using the same input as there, i.e. a dipole regulator unxy(z) = uya(z) =
1/(1+2*)? with A = 0.8 GeV, yields at the physical point: 2, = 40.61. The inclusion
of further meson-loop diagrams can diminish this value [243].

Since the simplest pion-loop contributions to proton and neutron carry an opposite
sign, their total cancels in the nucleon’s isoscalar and doubles in its isovector combina-
tion, defined by

F5W) = FP 4 " (6.39)

This implies ks ~ k', hence isoscalar quark-core quantities should be comparable
to their experimental or lattice counterparts. The experimental isoscalar magnetic
moment is small and negative: ks = —0.12. Our result at the u/d current mass is
ks = —0.03(3); it is consistent with zero throughout the calculated pion-mass range.

Electric and magnetic radii. Table 6.3 shows the results for the charge and magnetic
radii together with the experimental values. In agreement with the interpretation in
terms of an hadronic quark core, and similar to the result for the pion charge radius in
Fig. 3.7, the radii are sizeably underestimated.

By virtue of Eq. (6.39), the isoscalar and isovector Dirac and Pauli radii read

2 2
s\2 _ 1 p\2 Y2 s@\2 _ Kp (7“5) + Ky (13)
() =D, () = e (640
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FIGURE 6.7: Anomalous magnetic moments of proton and neutron vs. pion mass. The
results of setup (C3) are compared to quenched lattice data and their chiral extrapo-
lations (dashed curves) [59]. Dots denote the experimental values.

‘ Hp Hn, Ks
(C3) 2.56(5) —1.58(3) —0.03(3)
Exp. 2.79 —-1.91 —0.12

TABLE 6.2: Results for proton, neutron and isoscalar magnetic moments in setup (C3),
compared to experiment.

Tk (B i i
(C3) | 0.79(2)  0.00(1)  0.73(2)  0.72(2)
Exp. 0.89 —0.12 0.86 0.87

TABLE 6.3: Electric and magnetic radii of proton and neutron in setup (C3) compared
to experimental values. All units are fm except (r7%)? which is fm?.



76 Nucleon: Electromagnetic form factors

Because of the smallness of ks both experimental and calculated values for r5 suffer
from a large statistical uncertainty. Lattice studies usually compute isovector form
factors where numerically expensive contributions from topologically disconnected di-
agrams cancel. Pion-cloud effects are increased in the isovector channel; corresponding
lattice results are compared to the quark-diquark calculation in Fig. 6.8 where a mutual
agreement at large pion masses is clearly visible.

In contrast to the magnetic moments, the pionic components of electric and mag-
netic charge radii r%, rﬂ which correspond to intermediate N7 and Aw states carry
opposite signs in the flavor-separated channels, i.e., for the u and d-quark contribu-
tions [246]. The pion contributions to the charge radii logarithmically diverge in the
chiral limit since a massless pion has an infinite Compton wavelength. The quark-
diquark result yields (rTJE)2 ~ 0 throughout the inspected current-quark mass range
and, using Eq. (6.29), therefore implies:

()" ~ (f)" =~ ()™ (6.41)

A chiral expansion for the electromagnetic radii of proton and neutron similar to (5.22)
can be found in [57].

As discussed in Section 6.1, the Dirac form factor F1(Q?) is the Fourier transform
of the nucleon’s transverse charge distribution in the infinite-momentum frame [224],
hence the corresponding Dirac radii feature a direct interpretation in terms of transverse
charge radii. Experimentally: F7*(Q?) < 0, and the neutron’s Dirac radius is positive:
(r]‘)z > 0. With the convention of Eq. (6.30), where r{* denotes the radius of the up-
quark contribution in the proton and, via charge symmetry, that of the down-quark in
the neutron, Eq. (6.29) implies that the charge radius of the d-quark in the neutron is
smaller than that of the u quark:

(r7)? = ; ()= (11)°] > 0. (6.42)
The extracted transverse charge densities confirm that the central charge distribution
of a fast-moving neutron (proton) is negative (positive) [222]. This result is at odds
with the traditional view of a zero-charge neutron whose p 7~ pion-cloud component
generates a non-zero charge distribution which has a negative long-range tail but is
small and positive at its core.

The negativity of F*(Q?) is a natural feature of a quark-diquark model [63, 113]:
it can be explained by axial-vector dd diquark correlations (corresponding to s in
Eq. (A.35)) which, other than the scalar-diquark ud and axial-vector ud contributions,
induce a localization of the d-quark in the neutron. The quark-diquark model result
for the scalar-diquark contribution to (r})? at the light quark mass is 0.00(1) fm?
(Fig. 6.9). Adding axial-axial and scalar-axial correlations yields (r})? = 0.11(1) fm?
which basically cancels the neutron’s Foldy term to obtain 7% ~ 0, cf. Eq. (6.22). This
result is large compared to the experimental value (77)? = 0.01 fm? and indicative of
further destructive interference with pion-cloud corrections in the axial-vector diquark
channel.
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FIGURE 6.8: Squared isovector radii corresponding to the Dirac and Pauli form factors
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squared. Right panel: Pion-mass evolution of the neutron’s Dirac charge radius. The
full result is compared to the scalar-diquark contribution, cf. Fig. 6.6. Dots with
statistical errors denote the experimental values.
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FIGURE 6.10: @Q2-evolution of the proton’s form factor ratio u Gg/G s in setup (C3),
where the band denotes a variation of w. The result is compared to experimental
data obtained from Rosenbluth-separation [247] and polarization-transfer measure-
ments [229, 230, 248).

Large-Q? behavior. At larger momentum transfers Q2 > 2 GeV?, pion cloud effects
must vanish since the structure of the nucleon at small distances (< 0.15 fm) is probed.
The large-Q? behavior of the form factors therefore reflects genuine properties of the
nucleon’s quark core. Since quark and diquark propagators obtained from the quark
DSE or via the T-matrix ansatz necessarily exhibit singularities, the applicable @Q?
range of the form factor calculation is bounded from above (see App. B.3) and typically
limited to few GeV2. Access to the large-Q? domain, where the rainbow-ladder result is
expected to become increasingly accurate, necessitates appropriate methods to evaluate
these Green functions beyond their dominant singularities, i.e., to include the respective
residue contributions in the form factor integrals.

The solution for the proton’s form factor ratio u,G% /G4, is shown in Fig. 6.10 and
comparable to the quark-diquark model results of Refs. [62,63]. The small-Q? structure
is a further indication of missing pion-cloud effects. A Taylor expansion at small Q2

entails o 0?
2 2
M
Experimentally: 'r% ~ rp, whereas the quark-diquark calculation yields 7’% > 1.
Pionic contributions affect electric and magnetic radii differently [63].
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The evolution beyond Q% > 2 GeV? is mainly dominated by the proton’s quark
core. We note that the phenomenological transverse term introduced in the seagull
vertices, Eq. (A.138), has a sizeable impact on the form factor ratio in that region. The
parameters (A.140) optimize mutual agreement with the polarization-transfer data for
Gp/G) and those for G]]DV‘, and G7%,;. Nevertheless a variation of these parameters
only minimally affects the small-Q? region which therefore only depends on the input
introduced in connection with the effective coupling a(k?) of Section 3.2. We note
that the effective diquark vertices would naturally no longer appear in a form factor
calculation within the three-body approach according to Eq. (6.16).



Chapter 7

Conclusions and outlook

The covariant bound-state formalism, based on the Dyson-Schwinger equations of QCD,
provides a versatile tool for the calculation of hadron properties. It is formulated within
QCD, fully relativistic, and represents a continuum approach; it provides access to
infrared and ultraviolet momenta; and, with appropriate numerical algorithms which
have become available in the past years, it covers the full quark mass range from the
chiral limit up to arbitrarily large current masses. At the present stage, especially in
the baryon sector, we are only beginning to explore its potential and possibilities.

In this thesis a study of pion, p-meson, nucleon and A properties was presented in
such an approach, where the inherent link between meson and baryon observables is
expressed through a rainbow-ladder truncation in the quark-antiquark and quark-quark
channel. The effect of dynamical mass generation is manifest, while the truncation at
the same time preserves the nature of the pion as a Goldstone boson of spontaneously
broken chiral symmetry.

The rainbow-ladder kernel embodies an effective quark-gluon coupling «(k?) which
represents the only phenomenological input in the calculation of meson and baryon ob-
servables. T'wo models for the current-quark mass dependence of the coupling strength
were compared: the first setup is defined by a current-mass independent strength which
has long been known to provide a good description of pseudoscalar and vector-meson
properties; in the second setup, chiral corrections — partly owing to pseudoscalar
meson-cloud effects — were anticipated to construct an overestimated quark core for
the p-meson. The distinction between the two models arises in the infrared part of the
coupling, and its impact upon hadronic observables turned out to be an approximate
additive contribution to quantities with dimension of a squared mass.

A self-consistent solution of the three-body equation for the nucleon was presented
for the first time, where the kernel was given by a rainbow-ladder gluon exchange
between any two quarks. The result was compared to a quark-diquark calculation
which is enabled by the occurrence of artificial diquark mass poles in the gq scattering
matrix induced by the gluon ladder kernel. The result for My (m2) is very similar in
both approaches; the quark-diquark model is slightly too attractive, i.e. by 50 — 100
MeV. The overall properties of an inflated quark core are clearly reproduced in My
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and Ma; in particular, agreement with lattice data is obtained for all investigated
hadron masses when the quark mass becomes large. The mass of the A baryon in the
quark-diquark calculation appears to be unexpectedly large; it remains to be seen if the
three-quark approach provides further attraction or, as in the nucleon case, moderate
repulsion.

Results for the nucleon’s static electromagnetic properties as a function of the pion
mass were presented and compared to lattice results and chiral extrapolations. Simi-
larly to the pion charge radius, good agreement was found for the nucleon’s isovector
radii above the strange-quark mass whereas missing pion-cloud effects are clearly visible
in the chiral region. Except for G, the overall consistency of the nucleon’s electro-
magnetic form factors as a function of the photon momentum with experiment is quite
remarkable. Pionic effects are missing at small Q?, and their absence is amplified in the
proton’s form factor ratio Gg/Gps. The implementation of self-consistently obtained
quark and diquark propagators with a complex singularity structure leads to an upper
limit at several GeV?; together with a model dependence of the diquark ingredients at
larger photon momentum it impedes an unambiguous signal of a possible zero crossing.
The latter obstacle can be overcome by a form factor calculation within the three-quark
approach.

It is imperative to study the effects of different interactions in the ¢¢ and gq channels:
in particular, further admixture of a scalar-scalar interaction, induced by a scalar part
in the quark-gluon vertex, is expected to yield notable ramifications for the infrared
structure of QCD and derived hadron properties; the same is true for pionic effects.
Nevertheless, with a solution of the three-quark equation available, the journey beyond
rainbow-ladder is now simultaneously and consistently possible in both meson and
baryon channels; and the covariant bound-state framework as an ab-initio approach
evolves one step forward towards an understanding of hadron dynamics.

The now achieved increase of predictive power finally allows to reach out for more
observables which are in the focus of current experimental interest. For instance, a cal-
culation of the A mass, electromagnetic form factors and N-A transition form factors
is a natural application of the three-body approach. Further possible future directions
are: an extension to the heavy-quark regime, including hadrons with open strange,
charm and bottom quantum numbers; radial excitations of baryons and a clarifica-
tion of the role of the Roper resonance; strong and electroweak scattering processes;
form factors at large Q?; a study of exotic mesons in the bound-state formalism; and
a description of the hadron’s internal momentum and angular momentum structure
expressed through parton distribution functions and GPDs.



Appendix A

A collection of propagators,
vertices and amplitudes

In this appendix we collect the basic Green functions and bound-state amplitudes which
appear in the main text. We state their general properties and specify the expressions
that are used in the numerical computation. The quark propagator (A.1) and quark-
photon vertex (A.2) represent the ’elementary’ quantities of the approach. Color-singlet
mesons and colored diquarks are composite objects; their on-shell and effective off-shell
properties are summarized in (A.3) and (A.4), respectively. We discuss the bound-state
amplitude for the nucleon in the three-body framework (A.5) and that for N and A
in the quark-diquark approach (A.6). The diagrams which contribute to the nucleon’s
electromagnetic current in the quark-diquark model are stated in (A.9); they involve
diquark-photon vertices (A.7) and seagull amplitudes (A.8).

A.1 Quark propagator

As a fermionic two-point function which involves one momentum p, the quark propa-
gator can only depend on the two Dirac structures {p, 1}. The corresponding dressing
functions o, and o5 may be expressed through the quark renormalization function Z
and the renormaliization-point independent quark mass function M:

2 2
S(p, p) = —ipou(p?, 1*) + o5 (p°, 1*) = 2o p )2 (—ip+ M(p?)) . (A.1)

p? + M(p?)

Another frequently used notation involves the quantities A(p?, p?) = 1/Z(p?, u?) and
B(p*, p?) = M(p*)/Zs(p*, u?). The inverse propagator reads:

S(p, )~ = A, 1?) (ip + M(p)) . (A.2)
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Asymptotic behavior and quark condensate. Asymptotically, the DSE solution
for the quark mass function reproduces the behavior predicted from perturbation theory
(see, e.g., [98,193]):

pP—o0 m 2%y, —{(qq)
F(p*)m Nc¢  F(p*)l-mp?

(A.3)

where F(p?) = 1ln (p2 / AéCD) The coefficients m and —(gq) defined thereby are
the renormalization-point independent current mass and chiral condensate. For finite
current masses, the second term is suppressed by a factor of p? while in the chiral limit,
defined by m = 0, it determines the behavior of the asymptotic mass function.

The cutoff-dependent bare mass mg that appears in the bare quark propagator
and enters the quark DSE (3.2) is related to the renormalized mass m,, via the mass
renormalization constant Z,,: mo(A?) = Z,,(u?, A?) m,. For a large renormalization
point, M(p?) can be identified with m, which entails mo(A?) = M(A?) [98]. In the
following we will always assume p to be large, i.e. > Aqcp; in our calculation we
use the value p = 19 GeV.

The renormalization-point-dependent chiral quark condensate is obtained from the
trace of the chiral quark propagator:

A

—{qq)p = Zo(u*, A?) Zm(ﬂ2aA2)NC/TI'D{Schiral(%N)}v (A4)
q

with Z,(u?, A%) = M(A?)/M(u?) evaluated at large current masses. For a large renor-
malization point, the current-quark masses and condensates are related via

M(p*) = 5o —{aa), = —(aq) F(u*). (A.5)

Solving the quark DSE. The quark DSE (3.2),
S(p, )™ = Za(u®, A?) (ip + M(A%)) +Z(p, 1, ) (A.6)

can be rewritten in terms of two coupled integral equations for the quark propagator’s
dressing functions A(p?, u?) and M (p?):

Ap?, 1?) = Zo(n®, A%) + Ba(p?, 17, A?), A7)
M(p*) A(p?, %) = M(A?) Zo(u?, ) + Saa (0%, 1%, A%), '
where the scalar functions ¥4 and X, constitute the quark self-energy via
S(p, 1 A) = i Sa(0?, 1%, A%) + Sar (07, 17, 4%). (A.8)

Egs. (A.7) can be solved iteratively for chosen values of Zo and M (A2). Upon employing
a renormalization condition, e.g. A(u?, u?) = 1, and specifying the current mass M (1?)
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at the renormalization point as an input parameter, both Z and M (A?) are determined
together with A(p?) and M (p?) in the course of the iteration via

M(:u’2) — ZM(M27 /’L27 A2)
Zs(p?, A?)

Zo(i2,A%) = 1 — Sa(u?, w2, A2),  M(A2) = (A.9)

Omitting the renormalization-point and cutoff dependence for brevity, the self-
energy integral (3.3,3.7) in rainbow truncation reads

A
2(p)—/T:Vg(k2)7“S(q)’y”, g(k?) = 25 == =5~ (A.10)

where k2 =p? +¢> —2p-q =: p*> + ¢*> — 2\/p? \/¢? 2 is the squared gluon momentum
and g(k?) a shorthand notation for the effective coupling. The self-energy coefficients
become

A A
Sa(p?) = /au(qQ)g(k2)F(p2,q2,Z), Su(p?) =3/as(q2)g(/€2) (A.11)

and involve the quark dressings o, (¢?), 0s(¢?) which depend on A(g?) and M (q?). The
dimensionless quantity F' is given by

PPFW ¢ 2) = -1 Te {py* ¢y} T =

2 2
=pat 50 kg k) =3pa- 5 -0 0?) = (a1
2 2 2 232 2
+q° | (P*—q%) 2 (p- k)
— k24P = k+2 .
L S Y pH3p- k275

Since the only Lorentz-invariant combinations which appear in the quark self-energy
(A.11) are p?, ¢ and z, the loop integral becomes two-dimensional (cf. Eq. (B.6)), e.g.:

A A2 1
/ov(q2)g(k2)F(p2,q2,Z) ~ /dq2 e av(qz)/dz 1—229(K*) F(p*, 4%, 2).
q 0 —1

For a spacelike external momentum p? € R, the squared gluon momentum k? is real
and positive as well and the coupled system (A.7) can be solved without complications.

Quark propagator in the complex plane. If the external quark momentum p? is
complex, the argument k2 of the coupling g(k?) constitutes the interior of a parabola

k%:p2+q212\/;?ﬁz(tii|1m\/;?|)2, teRy, (A.13)

which passes through the outer point p? and has its apex at (cf. Fig. A.1)

2
t=0 = kp =— <Im\/1?> = % (Rep? — p?]) - (A.14)
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If g(k?) F(p?, ¢°, z) exhibits non-analyticities in that k? domain, one must either adjust
the size of the parabola (A.13) by imposing a limit on p? or resort to refined numerical
methods. The kinematic singularity in F' at k2 — 0 induced by the transverse gluon can
be compensated by a vanishing g(k? — 0). The infrared behavior of the parametrization
(3.14) almost satisfies that criterion:

a(k?) koo TYm
k2 A3

AO =1GeV. (A.15)

The remainder stems from the ultraviolet term and is relatively small compared to the
overall strength of g(k?). It results in small numerical artifacts which are visible in the
complex functions o,(p?) and o4(p?) upon a straightforward integration.

The complex conjugate branch points in the logarithmic tail of a(k?) lead to a
theoretical limitation

2
2
— <1m p2) > —Apep <Im ~1+ive2 — 2) = —(0.31GeV)? (A.16)

which is practically unimportant since they are concealed by the large oscillations of
the exponential parts in a(k?). The complex conjugate poles of the resulting rainbow-
ladder quark propagator are insensitive to these singularities as well.

A coupling which does not satisfy g(k? — 0) — 0 or involves further singularities
in the integration domain inevitably requires an advanced numerical treatment. The
same is true for a truncation beyond rainbow-ladder which leads to a more complicated
structure of the self-energy integrals. We shortly discuss two such strategies:

e Complex rays. Upon performing all the integrations except the ¢ integral,
singular points in k% lead to branch cuts in the complex ¢? plane, as illustrated
in Fig. A.1. For instance, a pole at k> = 0 generates a circular branch cut in
the complex ¢ plane with an opening at ¢> = p? (dashed line). The original
integration contour ¢ € R crosses these branch cuts and the resulting numerical
artifacts become dominant in a straightforward integration.

The logarithmic one-loop behavior (3.13) entails that any coupling exhibits sin-
gularities at k% # 0 as well: those will generally lead to more complicated branch
cut structures (dash-dotted line) which however still leave the arc ¢* = r e’ argp?
r € Ry, unharmed. A possible way to avoid all occurring branch cuts is to de-
form the integration contour ¢ € (0,A?) to a complex arc that passes through
the point p? and eventually returns to A2 € R in the far spacelike region. Since
os(q%) and 04(g?) must already be known on these complex paths, the complex
DSE solution is therefore obtained via iteration of (A.7) on a family of deformed
complex paths in p?.

This method has been sketched in [129] and is ideally suited if the singularities
of the resulting quark propagator which are generated during the iteration only
appear on the timelike p? axis. Such a singularity structure appears if a Ball-
Chiu-like ansatz for the quark-gluon vertex is applied [45].
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FIGURE A.1: Left panel: Integration domain of quark (¢?) and gluon propagator (k) in
the self-energy integral corresponding to a fixed external point p®. Right panel: Branch
cuts in the complex ¢? plane of the quark propagator and a possible integration path.

e Complex parabolas.

A different strategy to avoid singularities in the inte-
gration domain has been described in Refs. [110,128,249]. The basic idea is to
use the gluon momentum k instead of the quark momentum ¢ as the integra-
tion variable!. As a consequence, the argument k? of the coupling becomes real
and ¢ complex; hence the only relevant singularities are those of the final quark
propagator which are generated during the iteration. Now the internal quark
momentum ¢% = p? + k% +2p - k, with k2 € R, is bounded by a parabola

2
b =p k222 VE2 = (t/ + Z'|Im\/p2|) , ' cRy, (A.17)

whose position is characterized by the external quark momentum p?. The itera-
tion in (A.7) takes place on such a parabola, and the Cauchy formula is used to
obtain the quark propagator in the interior at each iteration step.

The method is particularly useful if the resulting quark propagator exhibits com-
plex conjugate poles, a feature which is common in rainbow-ladder studies and
was also recovered in more general truncations [42,128]. It furthermore allows for
a more accurate determination of the complex-plane propagator at larger quark
masses [249].

Analogous procedures can be implemented for evaluating meson and diquark ampli-
tudes in the complex plane of the relative momentum between the contributing quarks.

! The change of integration variables requires a translationally invariant regularization of the self-

energy integral. This is not realized by a hard cutoff A which leads to (however small) deviations
between results obtained in both methods. Implementing a Pauli-Villars regulator 1/(1 + k*/A?)
attached to the gluon propagator suppresses the UV modes and restores translational invariance but
ignores the perturbative 1-loop behavior of the effective coupling.
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A.2 Quark-photon vertex

The quark-photon vertex is the central ingredient of any hadronic electromagnetic form
factor diagram since, of all the fundamental degrees of freedom in the QCD Lagrangian,
only the quark is electrically charged. With the notation k = (ky + k_)/2 (relative
or Breit momentum) and @ = k4 — k_ (incoming photon momentum), where k; and
k_ are outgoing and incoming quark momenta, the general form of the quark-photon
vertex is

12
F‘E‘Q)(lﬁQ) = Zfl(q)(kzﬂk ' Q?QZ) T#U@Q)? (A18)
=1

where a possible representation of the Dirac basis elements is given by

7k, Q) € {0, B QMY < {1, @, K, [K, @1} - (A.19)

Induced by electromagnetic current conservation, a vector Ward-Takahashi identity
constrains the longitudinal contributions ~ Q" of the vertex by relating them to the
quark propagator:

QT (k,Q) = S (hy) — S\ (k-)

(A.20)
— Q“(i’y“ YA+ Qk“(i%AA + AB)>
Here we used the abbreviations
F(k2) + F(k? F(k2) — F(k?
EF — ( +) + ( 7)’ AF — ( +2) 2( 7)7 (A21)
2 k% — k2

where A(p?), B(p?) are the quark propagator’s dressing functions, and for Q* — 0:
Yr — F(k?) and Ap — F'(k?). The differential Ward identity for Q* — 0 reads

dS—1(k)

T i A(k?) + 2k* (if A'(k*) + B' (k%)) . (A.22)

© _

F(q)(k, 0) =
Implementing both relations yields the most general expression for the quark-photon
vertex:

Lk, Q) = i" B+ 2k"(if Aa+ Ap) + T§ T (k, Q). (A.23)

The first part is the Ball-Chiu vertex [250]. The transverse contribution I'.(k, Q) is
constructed from the eight basis elements ~ ~4*,k* and must satisfy T'%.(k,0) = 0
to obey the Ward identity, either by a Q" dependence of the basis elements or by a
vanishing amplitude at Q% = 0.
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FIGURE A.2: Momentum routing in the quark-photon vertex.

We note that, due to the transversality of the photon, the purely longitudinal com-
ponents of the vertex do not contribute to any hadronic matrix elements: only the
transverse projection of (A.23) does. In this sense the WTI alone provides no constraint
on physics. If, according to the basis (A.19), one starts from the general expression

Ll (k. Q) =T (7" TV (R, Q) + K T (k. Q) + QTR Q) (A24)

then '™ and I'® determine the physical content, while only the unphysical component
I'®) is constrained by the WTI:

QT (k,Q) = Ly (m” YA +2k(ifAa+ AB))- (A.25)

The transverse and longitudinal parts (i.e., the brackets in Egs. (A.24) and (A.25)) must
however share the same limit at Q> — 0 in order to avoid a kinematic singularity. This
is ensured by the differential Ward identity which subsequently determines Eq. (A.23).

Modeling the transverse part. The transverse part must vanish for Q? = 0 due
to current conservation. In the perturbative limit Q? — oo it is O(«a)-suppressed
compared to the Ball-Chiu construction which ensures a bare vertex via X4 — Zs and
A B — 0. Several parametrizations for the transverse part have been devised in the
literature, amongst which is the Curtis-Pennington ansatz that ensures multiplicative
renormalizability in the Dyson-Schwinger equations of quenched QED [251]:

(k-Q) (K +Q*/4)
(k- Q)%+ (Sp2)”

A modified ansatz which accomplishes the same constraint in unquenched QED was
recently proposed [252]; see Ref. [253] for a comprehensive overview on the topic.

A self-consistent solution of the full quark-photon vertex is enabled by its inhomo-
geneous Bethe-Salpeter equation [68],

(- Q7" — " @). (A.26)

T (k, Qg = Zain + / K (b, K @ g { STl (K, QU S(RL) - (A.21)
k/
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which, for consistency with the rainbow-ladder approach, needs to be solved with a
gluon-ladder kernel as its input. The resulting vertex [83] self-consistently generates a
vector-meson pole at Q? = —m% whose contribution significantly increases the charge
radii of pseudoscalar and vector mesons [83,86]. On the domain —m% < Q% <02GeV?
it could be described by a Ball-Chiu vertex together with a phenomenological ansatz
owing to the p-meson pole for the transverse part. We do not intend to repeat that
calculation here and hence adopt a similar ansatz:

1 =
ng(k,Q):_%l'—l—l

e—g(:c) Fgc(ka Q): (A28)

where z = QQ/mE7 and g, = vV2m,/f,. Eq.(A.28) necessitates knowledge of an (un-
physical) off-shell p-meson amplitude T'%.(k,Q). On the mass-shell (Q? = —m%) it
is determined self-consistently from its homogeneous BSE; for general Q2 we use the
off-shell prescription stated in App. A.4.

To compensate for any arbitrariness from the off-shell part, we introduced the func-
tion €79 where the choice g(x) = (p1 + pax?)(1 + z) optimizes agreement with
the results for the quark-photon vertex and the pion charge form factor obtained in
Ref. [83] within setup (C1). The corresponding value for 7, is reproduced if a current-
mass dependent parameter g(0) = p; = 0.001 + m2/(3.72 GeV?) is chosen? [113]. The
remaining parameter ps is relevant for the medium-Q? evolution of the p-meson part
in the vertex and impacts upon the nucleon form factors of Section 6.3. The value
p2 = 0.001, together with the transverse part in the seagull amplitudes (App.A.8)
maximizes agreement with the polarization-transfer data for the proton’s form factor
ratio GE(QQ)/GM(QQ)

We repeat that the ansatz (A.28) is inspired by low-Q? phenomenology which, at
this point, is the only accessible domain in our form factor calculation due to singularity
restrictions (cf. App.B.3). An exponential suppression of the transverse part clearly
disagrees with the large-Q? analysis, and future form factor investigations in that region
inevitably require an omission of the above ansatz in favor of a self-consistent solution
from the inhomogeneous BSE (A.27).

2 Note that the different values for p; in Refs. [60] and [113] were obtained through a slightly
different off-shell ansatz for the p-meson amplitude.
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A.3 Meson and diquark amplitudes

Meson amplitudes. The meson bound-state amplitude has been introduced in con-
nection with its homogeneous BSE (3.9). The Dirac structure of the amplitudes is
determined by the Clifford algebra of the gamma matrices. A general fermion-scalar
vertex depending on the momenta ¢ and P allows for 4 basis elements

Ti(Q7 P) € {17P7 gv M?P]}v (A29)

and a fermion-vector vertex includes 12 structures:

(g, P) € {0, ¢ Py < {1, P o, [ P (A.30)

The negative parity requirement for pseudoscalar and vector meson amplitudes,

(g, P) = —v'T(Ag, AP) 7", (A1)

(g, P) = v* A" I (Aq, AP)~* '
with the parity transformation A = diag(—1,—1,—1,1), requires the inclusion of a ~°
matrix. The resulting amplitudes, written with full Dirac, color and flavor dependence,
are given by:

, 0AB
5
Z (g%, 2, P? {ny Tk(q’P)}aﬂ ® 3 ® 1Sy,
(A.32)

dAB .
Zf @5 P)irt @ P)}  ® T2 @

The dressing functions fi(q?, z, P?) depend on the Lorentz scalars ¢, P? and the
angular variable z = cj-lf’. Upon solving the meson Bethe-Salpeter equation, they are
obtained on the domains ¢?> € R, (by implementing the same methods as discussed in
App. A.1 also for ¢? € C), P2 = —M? (i.e., on the mass shell), and z € (—1,1). Greek
indices refer to the Dirac structure, and the color structure of the meson amplitudes is
diagonal (A, B =1,2,3).

The isospin-triplet flavor matrices r°,
pT are given by

+

r* corresponding to the states 7%, 7% and p°,

rt =udf =

r~ =duf =

(0‘1 =+ 'i0'2) ) rO _ 1 (uu]L — ddT) =

5 g3, (A33)

N[—= N[
S

(o1 —io9),

where the o; are the Pauli matrices and u = (1,0), d = (0,1). They are normalized to
unity: Te{rere'} = 6.0
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R E—
q+ A a

FiGURE A.3: Notational conventions for diquark amplitudes. The quark momenta are
g+ = +q + P/2 and the indices are Dirac/Lorentz, color and flavor indices.

Diquark amplitudes. Apart from opposite parity, scalar and axial-vector diquark
amplitudes exhibit the same Dirac structure as their pseudoscalar and vector meson
counterparts. The incoming antiquark momentum —¢q_ is replaced by an outgoing
quark momentum ¢_ which is reflected by the charge conjugation matrix C' = y%~2.
We denote diquark amplitudes by the same generic symbol I':

. EABE _ o0
z, P {z e , P C} ® ® s,
Z (¢, V(e P)Cp ® =25 ® s

(A.34)
. EABE 1,23
ZP{ZT“ ,PC’} ® ® s 7.
Z (@ @ P)Cy 8 = @5
The isospin singlet and triplet matrices sob and s1 23 for the diquarks read
st=uwl=1(1+03),
0 = 7 (ude - duT) 7@02, 2 = f (u dJr + duT) 7 (A.35)

with the Pauli matrices o; and u = (1,0), d = (0,1). They are again normalized via
Tr{s*'s®'} = ... Due to the Pauli principle, diquark amplitudes must be antisymmetric
under quark exchange g4+ < q_,

[(q,P) = T (=dlyiq_0y» P) (A.36)

where the transposition involves all Dirac, color and flavor indices. Because of the anti-
symmetry of the color anti-triplet diquark the combination of flavor and spin structure
must be symmetric. As a consequence, spin and isospin states coincide for the two-flavor
case: scalar diquarks correspond to an antisymmetric isospin singlet and axial-vector
diquarks to a symmetric isospin triplet.
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While the flavor matrices do not give a contribution to the BSE integral (5.6),
the color factor ~ ¢4pp representing the diquark anti-triplet configuration leads to a
prefactor 1/2 compared to the meson BSE: diquarks are less bound than mesons. The
Dirac amplitudes ~ 1, v* in (A.29) and (A.30) are the dominant ones in a solution
of the rainbow-ladder BSE for the lowest-mass mesons and diquarks and reproduce
masses of the full solution within an error of < 20% [78,79,187].

Charge conjugation, C—parity and Pauli principle. The charge-conjugated Dirac
amplitudes are defined by

f(Qa P) = CFT(_qv _P) CT7

(A.37)
F'u(qa P) = _CFNT(_CL _P) CT ;
where the superscript T’ denotes matrix transposition®. Pseudoscalar and vector mesons
with equal quark masses are C-parity eigenstates (e.g.: J ¢ =0t 17 for 7 and p)
which entails

F(va) = F(Qv _P)v fﬂ(q’ P) = FM(Q? _P) (A38)

for the Dirac part of the ground-state amplitudes, assuming equal momentum parti-
tioning. On the other hand, diquarks are subject to the Pauli principle which leads
to

F(Q7P) = _FT(_%P)? F“((L P) = FMT(_% P) . (A39)

For an appropriate Dirac basis whose elements satisfy Egs. (A.38-A.39), both con-
straints require the dressing functions to be even in the angular variable z = ¢ - P.If
a Chebyshev expansion is employed (for details, see App.B.2), only even Chebyshev
moments contribute which is ensured by the fact that the BSE kernel decouples even
and odd Chebyshev moments. Conversely, pseudoscalar and vector-meson states with
opposite C'—parity (associated with the exotic’ quantum numbers 0=~ and 1~) carry
an odd dependence on z.

Mesons and diquarks on the mass shell. For the actual solution of the meson
and diquark BSEs, Egs. (3.9) and (5.6), it is advantageous to construct orthogonalized
versions of the general Dirac basis elements (A.29,A.30) at the respective mass poles
P? = —M?. Suitable choices for the (pseudo-)scalar and (axial-)vector cases are given
in Table A.1. Their orthogonality relations read

1

1
ZTr{TiTj} :51']' ai(z) s 4

Tp" Te{r} 77} = 045 bi(2) , (A.40)

3 Note that this definition differs in two respects from the somewhat standard convention in the
literature. First, the left-hand sides of Eq. (A.37) are usually denoted by I'(g, —P), whereas the above
definition is more convenient when using the abbreviation I'. Second, the conjugated vector-meson
amplitude is usually defined without the minus sign. We chose Eq. (A.37) to enable a common definition
of charge conjugation for meson and diquark amplitudes, given that the dominant amplitudes in both
cases carry a factor 4, i.e.: iv5, iv*, iy5C, in*C.
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J=0 J=1
=1 T =A* 5 =z (Y7 — §")
=P 4 =P =i " P — 5[4, P)
m=cdr | d=id =it b
n=ilf,P] | T =z¢P =3 @AP - 3[4, P

TABLE A.1: Orthogonal basis elements for pseudoscalar mesons/scalar diquarks
(J = 0) and vector mesons/axialvector diquarks (J = 1), designed such that all corre-
sponding dressing functions fi(q?, z, —M?) are real and even in z for equal momentum
partitioning. ¢y = Th"¢", where Th" is the transverse projector with respect to P. Due
to the transversality of on-shell vector mesons (and, by analogy, axialvector diquarks)
an additional projector 7" must be attached to the J = 1 basis elements; hence the
four longitudinal basis elements ~ P* do not contribute on the mass shell.

where
b b 2
m=ay=o=—2=1, b=—b=2(1-2")7
33 3 (A.41)
as _as b b5 b o
2 4 5T 2 222 2

Contraction of the BSEs with these basis elements and exploiting the orthogonality rela-
tions leads to coupled homogeneous integral equations for the coefficients f(q?, z, —M?)
which can be solved in any arbitrary frame. Exploiting the O(4) symmetry of the
problem, a decomposition into Chebyshev polynomials of the second kind is usually
employed for numerical convenience (see App.B.2). Typically only a few Chebyshev
moments f}'(¢?) have to be taken into account to match the full solution [78,79]. This
observation will be used in the context of the diquark amplitudes’ off-shell continuation
where the angular dependence is neglected (App. A.4). Upon introducing an artificial
parameter \(P?) in the homogeneous BSE (5.6), the equation becomes an eigenvalue
problem where a bound-state solution is obtained for A\(—M?) = 1.

Normalization. A bound-state amplitude is normalized by a canonical normaliza-
tion condition, Eq. (2.24), which is obtained from evaluating the derivative of Dyson’s
equation at the mass pole. Since a two-body ladder kernel is independent of the total
momentum P only the derivatives of the propagators contribute. Defining the quantity

Q) i=rp [{T00. 1) S@ T 0 K)S(-a)}, L (Ad2)

q



94 A collection of propagators, vertices and amplitudes

where the notation Q) includes both cases J = 0 and J = 1, and M is the pseu-
doscalar or vector-meson mass, the normalization condition reads:

d
i1 Qr(P?) =1. (A.43)
P2=—M

Qr = T5"Q" /3 is the transverse component of (A.42) for J = 1. Trp denotes a Dirac
trace; the color-flavor trace is 1 since we use normalized color and flavor matrices.
An analogous normalization applies to the diquark amplitudes, except for replacing
S(—q-) — ST(q-) in (A.42) and attaching a symmetrization factor /2 in front of
the integral [177]. In combination with the normalization (A.43), the Bethe-Salpeter
equation completely determines the meson and diquark amplitudes on the mass shell.

Electroweak decay constants and pion charge radius. The pseudoscalar and
vector-meson leptonic decay constants are defined by [79]:

A
ifems =VNe 2o Top [ [P PS@OT@P) S0,

q \ (A.44)
| T .
ifymp = /No 2 gTrD/ " 8@ @ P)S(-a)]

q

where the prefactor v/N¢ emerges from the color normalization in (A.32).

As a consequence of electromagnetic gauge invariance, the pion’s electromagnetic
current operator which is consistent with the rainbow-ladder kernel is the impulse-
approximation current (cf. Section 6.1):

I =Tro [ Flag, Pr) S Ty (0, Q) S@) T P) S(-0) . (Ad)
“w

(a
on the photon momentum @, average total momentum P = (P; 4+ P)/2 and loop

relative momentum ¢ via

where I’ ) is the quark-photon vertex of App. A.2, and the involved momenta depend

Gif=qFQ/4, Py=PFQ/2, qr=+q+P/2, ¢f=q+Q/2.

The incoming and outgoing pion momenta are onshell: Pi2 = PJ% = —m?2 and hence
P - @ = 0. The most general Poincaré-covariant expression of the current is given by
(cf. Eq. (A.112))

JHQ?) = 2PFFL(Q%), (A.46)

where F;(Q?) denotes the charged pion’s form factor. Charge conservation F(0) = 1 is
ensured by the Ward identity (A.22). The quark-photon vertex (A.23), together with
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the phenomenological transverse part (A.28) which incorporates a vector-meson pole,
yields for the pion form factor:

1 =z
F(Q*) =F, %) = Fpen(Q?) — —9(@) A.47
(@) = Frsc(@) — Fore(@®) g ™, (A.47)
i.e., the sum of a Ball-Chiu piece and the pr7 triangle diagram whose experimental
value is FpM(Q2 = —m?)) = gprr = 6.14. The latter component vanishes for zero

photon momentum transfer owing to the transversality of the respective vertex. For
Q? > 0 it reduces the Ball-Chiu contribution to the form factor and typically supplies
~ 50% to the squared pion charge radius [60,83], extracted via

6

ra =—6F(0) =r2pc + —5 Furr(0) e 900, (A.48)

A.4 Off-shell structure of the T-matrix

Diquarks correlations in the nucleon are off-shell: it is the very requirement that the
integration domain of scalar and axial-vector diquark propagators in the quark-diquark
BSE (5.12) cannot exceed their pole locations without a systematic inclusion of residue
contributions. The tool to gather information on the off-shell structure of the quark-
quark scattering matrix 7 is the Dyson equation (2.18). The diquark ansatz (5.4)
was introduced as a workaround to avoid its explicit calculation; a subsequent solution
of the diquark BSE however only determines 73 on the diquarks’ mass shells. As will
be detailed below, a naive implementation of the on-shell T-matrix for off-shell (and
in general complex) total diquark momenta P? # —M?, i.e., by using on-shell diquark
amplitudes and free spin-0 and spin-1 diquark propagators
2\ 1 nuv _ Tgy L;V
DiP) = P2+ M2’ DH(P) = P2+ M2, * M2,
poses several conceptual problems which require closer attention.

A manifest strategy to bridge the gap between the separable ansatz for T2 and its
solution from Dyson’s equation is to consult Eq. (2.18) once again, namely to determine
the diquark propagators D(P2) upon constructing a sensible analytic continuation of
the on-shell amplitudes I'(q, P). Thereby the Dirac, color and flavor structure of the
separable ansatz is maintained at off-shell momenta while certain features of the full
self-consistent solution of the T-matrix are implemented as well.

(A.49)

Asymptotic behavior I. The asymptotic limit of the kernel K2 is a gluon ladder
exchange. This can be inferred from the kernel’s skeleton expansion: the ladder diagram
is independent of P? while all higher-order contributions vanish for P2 — oo due to the
appearance of additional quark propagators which behave as S — 1/ vV P2. The Dyson
sum (2.17) implies that the gluon ladder kernel (3.11) also dominates the asymptotic
behavior of the T-matrix:

Proeea(k) (A (N o
T o0, ) ~(5) (5) @M s (as0)
AC BD
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This is apparently not reproducible through the ansatz (5.4). The implementation of
Dyson’s equation in the previously described manner at best guarantees the correct
power-law behavior I' DT — const. of the T-matrix in the variable P?: if the diquark
amplitudes are chosen to become constant for large P? (e.g., via their dominant Dirac
structures 4°C, ¥*C), the resulting diquark propagators will become constant as well.
Phrased differently, they pick up finite parts which would appear in a T-matrix beyond
the diquark ansatz. These contributions are suppressed on the mass shells but dominate
the ultraviolet region.

Offshell ansatz for diquark amplitudes. We start from Eq. (A.34) and for conve-
nience discuss the offshell dependence of the diquark amplitudes in terms of the basis
elements 75 (g, P) and 7/'(¢, P) alone while the dressing functions are left unchanged at
their mass-shell values:

Tse(q, P) = Y (g% 2 = 0,—M2) ir°ri(q, P) C,

=~
o || ~
=

(A51)

Tr(q,P) =Y f(¢*2=0,-M2)itl'(q,P)C.
k=1

A solution of the quark-diquark BSE in the nucleon’s rest frame requires boosted
diquark amplitudes. A boost shifts the angular variable z in the diquark amplitudes’
dressing functions into the complex plane and even outside the convergence radius |z| <
1 of the Chebyshev expansion which therefore no longer poses a sensible procedure.
Setting z = 0 (only) in the dressing functions is a reasonable approximation on the
diquark’s mass shell and similar to keeping only the zeroth Chebyshev moments. .

The transversality condition for the on-shell axial-vector amplitude need not be
included explicitly since it is already ensured by the transverse pole in the axial-vector
diquark propagator: each diquark amplitude in the subsequent calculations appears in
conjunction with the respective propagator. Likewise, the purely longitudinal off-shell
components related to 7' 15(g, P) are generated by the longitudinal projection of the
diquark propagator which is suppressed by a factor of P? + va on the mass shell.

In the following we will make use of the dimensionless diquark momentum variables

Tge = P?/M2, x, = P?/M2, (A.52)

and abbreviate both by the symbol z, where the context selects either of the two
possibilities. Specifically, it entails £ = —1 on both scalar and axial-vector diquark
mass shells.

The on-shell basis of Table A.1, expressed in terms of a normalized diquark momen-
tum P, does not provide a unique analytic continuation to off-shell momenta:

e Using that basis, all amplitudes would be equally important at P? — oo and
determined by their strengths on the mass shell. This is not a fundamental prob-
lem if one keeps in mind that, in our context, an off-shell diquark amplitude is
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no meaningful object in itself but merely an auxiliary device for constructing the
off-shell T-matrix, especially since the requirement (A.50) cannot be met any-
way. Nevertheless we choose the dominant diquark amplitudes I'sc(q, P) ~ i7°,
Iy (g, P) ~ iv" to prevail in the UV such that the diquark becomes ’pointlike’
at large diquark momenta. This feature would be explicit in an inhomogeneous
BSE solution for a scalar and axial-vector vertex. It is accomplished by suppress-
ing all subleading amplitudes with a factor g(z) which leaves the on-shell value
unchanged: g(—1) = 1. We use g(x) = (z + 2)~*/2 and, for the time being,
keep k > 0 as a variable (later we will set k = 2). For large  the subleading
amplitudes are suppressed at spacelike momenta and provide support only in the
neighborhood of the mass shell which resembles the case where only the dominant
diquark amplitudes are taken into account.

e The normalized basis of Table A.1 includes kinematic singularities at P? = 0
which, if not dealt with, lead to imaginary parts in the spacelike diquark prop-
agator calculated from Egs. (A.59) below. Contributions ~ P and ~ z should
behave as v/ P2 in the vicinity of the origin. For this reason we attach a factor
h(x) ~ /T to any occurrence of P* or z = ¢ - P. The choice h(z) = —iy/x
amounts to the replacement of the normalized by an unnormalized basis, i.e.
Pt — PH/(iM). Tt would be sufficient to guarantee the correct on-shell behav-
ior but renders the UV behavior completely arbitrary: some amplitudes would

become constant, others would rise with powers of v P2. We therefore choose

h(z) = —i\/x/(z + 2) which entails

. PH M?2
Pr=miV s e (A.53)

and hence h(—1) =1, h(0) =0, h(co0) = —i.

The final off-shell ansatz for the scalar and axial-vector diquark bases is given in Table
A.2. This is the construction which was used in Refs. [113,202]; it slightly differs from
that employed in Ref. [129]. In combination with the diquark propagator of Eq. (A.59)
it provides a prescription for the quark-quark T-matrix which is unique on the mass
poles and in the ultraviolet whereas its intermediate momentum behavior depends on
the parameter x inherent in the definition of g(z). We note that a further P?-dependent
function attached to the full scalar or axial-vector diquark amplitude does not change
the product I' DT since it would also appear in the diquark propagator and leave the
T-matrix itself (and as a consequence, baryonic observables) invariant.

Diquark propagators. With an off-shell ansatz for the diquark amplitudes at hand,
the Dyson equation (2.18) can be exploited to obtain a consistent expression for the
diquark propagator. Insertion of the diquark pole ansatz for the T-matrix,

T =T DT + " DTV, (A.54)
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J=0 J=1
m=1 T =" 8 = ghz {v* fir — §"}
= ghP o =ghyrp ol =ghi{@eP -1, P}
s =ghz{r 74 = gig" 7 =g {d" it — 3"}
n=ghili.P) | T =gh?za'p = gh{§BvP -l P}

TABLE A.2: Scalar and axial-vector diquark off-shell bases, to be used in conjunction
with Eq. (A.51). The replacements g7 — (§ — h?z JP) and % — (1 — h?z?) are implicit.

into Dyson’s equation yields:
DT +THD*TY = K+ KGoI' DT + K Gy T*DM'T" . (A.55)

Successive application of quark propagator pairs Gy and scalar or axial-vector diquark
amplitudes from the left and the right and closing the loops by integration and tracing
yields (transitions between scalar and axial-vector amplitudes vanish because of their
flavor traces):

(T GeI)D(FGoT') = (T GoKGoT)+
+ (CGoKGoT)D(L GoT),

_ _ _ (A.56)
(T*GoT*) DM (T"Go I'P) = (T*GoKGo T¥) +
+ (T*GoKGo ") D" (T Gy IT7).
We simplify the notation by introducing the shorthand notation
v I = v 1 T v
n() = i TG r®) = — oz D / W 5@, (A.57)
v I = v 1 T v
B = TG K GoT®) = — L T / / FWSSKSSTW,  (A58)

where we chose the letters n for normalization and k for kernel: n#) is, up to a
minus sign, the dimensionless version of the normalization integral Q(P?) defined in
Eq. (A.42), but now without the P? dependence of the diquark amplitudes held fixed.
Upon decomposing each axial-vector quantity D*”, n*”, kM into a transverse and
longitudinal part (e.g. D* = Dp T g” + Dy, L’;,"), the above equations become

D=t = M2 f—n D' = M? ﬁ—n Dy = M? ﬁ—n (A.59)
= Wse |\ 1 y U — May kr T |, Y, — May kr Lj- 0
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FIGURE A.4: Defining equation (A.59) for the diquark propagators. The first graph
corresponds to n?/k, the second term to n.

These are the defining relations for the scalar and axial-vector diquark propagators in
the quark-diquark model. n and k are scalar functions that depend on x = P2%/M?,
where M = M. or M,,.

An ansatz for the two-loop integral. n(x) is a one-loop and k(z) a two-loop
integral, to be evaluated for z € C since the quark-diquark BSE samples the diquark
propagators within a parabolic domain in the complex P? plane. While n(z) can be
easily evaluated, we try to circumvent the Monte-Carlo calculation of the quantity n?/k
for general momenta P? and model it instead by an ansatz, a procedure which will also
prove useful in App. A.7 when constructing a diquark-photon vertex. What conditions
can be imposed upon these functions?

e By construction, the diquark propagators should exhibit timelike poles at P? =
—M? which enable the derivation of the diquark BSEs and thereby define the
diquark masses. Transversality of the axial-vector diquark amplitude on the mass
shell is ensured by a transverse pole in the axial-vector propagator. The pole
conditions D™H(P? = —M2) — P?+ M2 and D;'(P? = —M2) — P? + M2,
amount to the relations

n(T)(—l) = k‘(T)(—l) R n'(T)(—l) =1+ ]{TET)(—l). (A.GO)

e To avoid kinematic singularities, the transverse and longitudinal parts of the
axial-vector propagator should be equal at P? = 0: Dr(0) = D(0), and for each
single term: ny(0) = nr(0), k7(0) = k£(0).

Defining X :=n(—1) and 3 := 1+ n/(—1), one can write

n2 n2 n2

- = >\sc +ﬁsc F(ZL‘), L = )\av‘{'ﬁav FT(iL‘), L = Aav"’ﬁav FL($)7 (A61)

k kr kr
where the 2-loop content has been shifted into the unknown functions F(z). The
above conditions require F(7)(—1) = 0, F(’ )(—1) =1, and Fr(0) = F(0). A two-
loop evaluation of the integral k(") at specific P? € R verifies that these relations,
together with Fr(co) = Fp(c0), are indeed satisfied. The values of A and 3 depend
on the number of amplitudes that are taken into account. For instance, if only the
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dominant amplitude is retained: ([ = 0, since by virtue of our off-shell ansatz the
diquark amplitudes are then independent of P? and n(ry becomes the normalization
integral, with n’(T) =—1.

An ansatz for F(x) can be constructed in the following way. Formally, if we had
started from the inverse Dyson relation 77! = K~! — Gy, we would have arrived at
the expression n?/k ~ ' K~'T. Since the rainbow-ladder kernel is independent of the
total momentum P and the dominant diquark amplitudes are as well, the only P?
dependence of that term is introduced by the subleading diquark amplitudes through
the functions g(x) and h(z). On the mass shell, T K~'T ~ n?/k = X is real, and so
is each single contribution ~ 7; K~! 7;. Hence F(z) can only depend on even powers
of h(z), otherwise it would be complex on the positive real axis. Consider the scalar
off-shell basis given in Table A.2: the general form for F'(x) is

F(z) = Fy + (g(2)h(x))? (F2 + Fsh(z)? + Fyh(z)*) . (A.62)
Exploiting the conditions F(—1) = 0 and F'(—1) = 1, using ¢'(—-1) = —k/2 and

h'(—=1) = —1, leads to

2
Fla) = 1= (gﬁ(? ;L(x)) (1+2F; +4F,) + (A63)

+ (9(a) h(@)* {F3(h* = 1) + F()(h* = 1)},

which for large z becomes

14 2F3+4F,

s (A.64)

The numerical 2-loop result yields F'(z — oo) ~ 1/(k + 2). F3 and Fy only emerge
through the transverse projection of ¢ in 73, so it is conceivable that they are small.
We therefore choose the approximation:

1 — (g(x) h(z))? 1 x
F(x) =~ (i(—l—)2( ) = 12 <1+ ($+2)H+1>. (A.65)

A similar analysis for the axial-vector case (here the Monte-Carlo calculation yields
F(zx — o0) ~ 1/k) leads to

— a(x)?
Fr(z) ~ 1?) - % (1 - M) . (A.66)

The longitudinal parts Fr(x) are poorly constrained. For simplicity we choose Fp(z) =
Fr(z), ie. n%/kT = n%/kL Note that this does not implicate ny = nr, i.e. the axial-
vector pole still appears only in the transverse part of the propagator.
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We summarize: the diquark propagators we use are given by

D™HP?) = M2 { — n(x) + Asc + Bse Fso(2) } (A7)
(D" (P) = M2, { = () + (Nav + Bav Fav(x)) 647} ‘

where x = P?2/M? (M = M. or M,,). n(x) and n*¥(x) are the numerically computed
quark-loop integrals of Eq. (A.57) with the onshell values n(ry(—1) = A and n’(T) (-1) =

B — 1. The functions F'(z) are defined in Egs. (A.65-A.66), and we use the value kK = 2
in our calculation:

F(z) = i <1 + M) , Fy(a) = % (1 - (xj?)?) . (A.68)

With Egs. (A.67), (A.51) and Table A.2, the off-shell behavior of the quark-quark
scattering matrix is completely determined.

Asymptotic behavior II. By virtue of Eq. (A.67), the asymptotic limits of the inverse
diquark propagators are
Dil(P2 — OO) = Ms2c {Asc + 65(?/4}7
(DY) (P? — 0) = M2, {Nay + Bav/2} 3",

i.e. they become constant in the ultraviolet since the quark-loop integrals n vanish in
the UV due to the P? suppression of the quark propagators. This is the anticipated
result which follows from the off-shell ansatz for the amplitudes:

FSC(Q7P - OO) - flsc(q2707 _MSQC) i7507

(A.69)

5 5 (A.70)
ng(% P — OO) - flav(q 0, _Mav) M,
Typical calculated values for A, § and the amplitude normalizations are:
>\SC ~ 17 /6SC ~ 17 1SC(0707 _MSZC) ~ 207 (A?l)
Aay ~ 0.5, Bay ~ —0.4, (0,0, —M2,) ~ 10.

Consider the propagators constructed from (A.67) in the limit of a single dominant
amplitude, i.e. where 8 = 0:
1 1 1 ThY LY
D(P*)=— ———— DW(P)= ( L P
(P%) (P) M2, \ Aoy —nr(z)  Aav — np(x)

= , . (A.72

Mszc )‘SC - ’I’L(:U) av ) ( )
A simplification which reproduces the perturbative and on-shell behavior (the error in
the intermediate P? region is < 30%) reads

1 1 1 1 oH ThY
D(P?) ~ — ., D"™(P)~— [ — L, A.73
7 Mg, <)‘sc+33+1> (7) M3, (Aav+$+1> ( :
which explicitly demonstrates the appearance of non-resonant contributions in these
"diquark propagators’ which serve as a surrogate for a more involved structure of the

T-matrix. Of course one could have directly extracted a pole contribution from the
result (A.67) to arrive at a similar form.
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A.5 Nucleon amplitude

This section collects supplements to the Faddeev equation of Chapter 4. The nucleon’s
three-quark amplitude (depicted in Fig. A.5) including its full Dirac, flavor and color
dependence is given by

EABC
U(p,q,P) = {‘I’(p,q,P)MA ® Tamy +¥Y(p,q, P) s ® TMS} ® \/% : (A.74)

The Dirac amplitudes Wy ,, Waqg carry four fermion indices and depend on two rel-
ative momenta p, ¢ and the total onshell nucleon momentum P, with P? = —M?2.
Their decomposition into Dirac basis tensors with Lorentz-invariant coefficient func-
tions is stated in Eq. (4.4), and an orthogonal 64-dimensional basis Xiij is presented in
Table 4.1. Waq, and ¥y 4 are mixed-antisymmetric or mixed-symmetric with respect
to the permutation group S®. The Clebsch-Gordan construction of the corresponding
flavor tensors reads:

Tt = Lo ©1 =@ (uul + dd)

(A.75)
_ 1 : _ 21 1 2 23
TMs =~ 5000200 = \/;s ®duT—%s ® (uu’ — ddf) — \gs ® udf,
where o; are the Pauli matrices and s°, s1'?3 denote the (anti-)symmetric isospin-0
and isopin-1 quark-quark representations defined in Eq. (A.35). A projection onto the
proton’s or neutron’s flavor state involves a contraction of the rearmost flavor index
with either of the two isospin basis states u or d.

Basis transformations. In the Dirac basis of Table 4.1 we exchanged the basis
elements Soj, Py (j = 1...4) with the vector-vector and axialvector-axialvector com-
ponents Vij;, Aij. The remaining basis elements of Eqs(4.9) and (4.10) are linear
combinations of the former:

So1 = £(P34 — Paz — A12) V31 = S13 £ P31 F A3
Soo = F(P33 + Pas — App) V32 = So3 F P41 + S14
So3 = £(P32 + P41 — Awa) Vi3 = S11 F P3s £ Ayg
Soq = £(Pa2 — P31 + As3) Viq = S12 F Pas £ Agp
(A.76)
Vo1 = Sy3 — S34 F P12 Vi = S14 £ Py F A
Voo = S33 4+ Suq £ P11 Viy2 = So4 £ P31 — Si3
Va3 = Sg2 + Su1 F P1a Viz = So1 T Paz £ Aoy

Vo4 = Si42 — S31 £ Py3 Vig = St FPuutAn
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FicUre A.5: Momentum routing in the nucleon’s three-body amplitude.

The positive/negative signs refer to the superscripts + which we did not state explicitly.
The corresponding relations for P, A are obtained by interchanging S < P, V « A, and
similar dependencies hold for the T;;, e.g.: T{; = —2Af;. Eqgs. (A.76) can be verified
by expressing internal products such as 74 pr through the respective commutator and
using

ol Ay = T iehves pe 751 VAL, with o} = —% (V5] (A.T7)

together with the e-tensor identities
gHaBY ghpoT — dap (0800~ — 0870~5)
+ dao (5,6'7570 - 5ﬁp577)
+ dar (55;)570 - 5ﬁ057p) )

ghvel gpvpo — 9 (0apds — 0acbsp)
ghvAa g — ¢ 0ag -

Explicit implementation. The Faddeev equation is solved via iteration using similar
techniques as in the two-body case. A 'wave function’ ® = SS WV is extracted from the
equation ¥ = KSS WV and evaluated outside the loop integral. The subsequent inte-
gration ¥ = K& is carried out by calling the wave function ® with the loop momenta
as its arguments:

(I)(a)(p,q, P) = S(pb) S pc) \Il(pv(.IvP)a
(A.T8)

The index a = 1... 3 denotes the three permutations of the Faddeev kernel, and {a, b, c}
is an even permutation of {1,2,3}. These steps are repeated for fixed P? until the
eigenvalue \(P?) converges. The value A\(—M?) = 1 which defines the nucleon mass M
is obtained upon processing the above procedure for different P2.

If the Dirac basis is complete, the wave function can be projected onto the same
basis elements as the amplitude (cf. Eq. (4.4)):

64
) s(0,a.P) = [0 A (.0, Pagns » (A.79)
=1
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where the 7; are given by the orthonormal basis elements X*. Using the orthonormality
relations (4.23) yields coupled equations for the amplitude and wave function dressing
functions:

0% a2 {2 = ZZ/’C (.. P.K) [ (4%, {2}

j a=1 (A80)
90 2 {2)) = Zgw 4. P) £ (0% % {=}) .

where the kernel ICZ(;L) and quark propagator matrix gfj) are the matrix elements

(a) = (a) a a
ICij (p7 q, P’ k) - Ti(p’ q, P)ﬁa,é'y Kaa’ﬂﬁ’fy’y’(k) Tj (p( )7 q( )7 P)a//gx’,y/(g )

(@) B (@) (A.81)
gij (pa q, P) = Ti(pv q, P)ﬁoc,é'y Gaa/ﬁfglfyryl (p> q, P) Tj (p7 q, P)a’ﬂ/,'y’é
of the quantities
K% k) = Koo gy (k)
w’ﬁﬁ’w’( ac’g@ (k) Oyyr (A.82)
5 .
wa)c’ﬁﬁ’w’(p’ q, P) = Saa'(pl) S,B/Bl (pQ) 6’7’7/ ’
and the remaining expressions corresponding to a = 1,2 are obtained by a cyclic

permutation of the index pairs and momentum indices.

Numerical aspects. The Faddeev equation (A.80) is equivalent to an iterated (multi-
dimensional) matrix-vector multiplication, where in a straightforward implementation
the kernel K and propagator matrix G would be computed in advance The kernel
depends on 9 Lorentz-invariant momentum variables: five (p?,¢?, {z}) correspond to
the outer momenta p, ¢, P and four (k2, k- P k - - P, k - §G) to the loop momentum k. It
furthermore involves the amplitude indices 7,5 = 1...64 and the permutation counter
a = 1,2,3. Choosing 20 grid points for each momentum variable leads to a memory
requirement of 20 (momenta) x 642 (amplitudes) x 3 (permutations) x 16 (double-
precision complex number) Byte ~ 90 Petabyte, which is clearly beyond the capacities
of today’s computing facilities.

The uppermost priority in a numerical optimization thus concerns the reduction of
memory usage of the kernel ICE;). This can be accomplished by splitting the kernel in
a momentum-independent component which involves all Dirac traces (to be computed
in advance) and a momentum-dependent part which is evaluated during the iteration
process. With the momentum alignment (4.16), on whose account pr, ¢ and P become
the three orthogonal unit vectors of Eq.(4.17), the conjugate basis elements 7; in
Egs. (A.81) effectively do not depend on any momentum at all, and the momentum
dependence is carried by the inner elements Tj(p(“),q(“),P). One may rewrite the
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orthonormal basis X?; in the following way:

1®1 i=1,5,7
5 5 .
A i=2,6,8
Xzij B BN Tij(p, ¢, P) (Ai’Y5C®A+>a ) (A.83)
V3 7 Yy 1=23
7 O i=4

Abbreviating pr — p and ¢; — ¢, the momentum-dependent parts T;; for i = 1...4
(i.e. the s =1/2 covariants) and i = 5...8 (s = 3/2) read:

T, (<4 | V8T, (i=50) V3T, (i=1,8)

11 3PP — 4k PRP+24® ¢ — Q%
1® 5 [P 4] 3Pd—d@p) —vrvphd] | pRd+dep

1@p 3P 1L — v @V 4 [d.p] = 37 @ [, P]
1@ 31— @4 PR [hd] — 5% @ [ d]

This simplifies the extraction of the momentum dependence, e.g. in the nucleon’s rest
frame via

1
Tica,2 = 5 €tmn (L @~4™Y") (eirs0"¢°) , (A.84)

and similarly for the remaining ones. Hence the kernel can be written as
a a)l a a
K (0,0, PR) = K5 )] [gh (0, a ), P)] (A.85)

where the momentum dependence carried by the T;; has been shifted into the functions
gfj. In the same way one may isolate the kernel’s dependence on the gluon momentum

4o (k?)
12

This strategy greatly reduces the memory demand to < 1 GB. The impact on the
run time due to the above multiplication (which is now processed on the fly) is still
slightly outweighed by the time consumed to interpolate the dressing functions inside
the integral. For this reason we drop the dependence on the angular variable zg = p7-qr
which, from analogy of the quark-diquark model, is expected to be small. In addition
we perform an expansion into Chebyshev polynomials of the first kind (see App. B.2)
in the remaining angles z§a), zéa) that appear in the wave function coefficients inside
the integral. The resulting run times are accessible by a parallel cluster.

K5 (p,q, Prk) = [’Cg}l)l’“y] [ Ty ”gij(p(“),q(“),P)] . (A.86)
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A.6 Quark-diquark amplitudes for N and A

Nucleon. The matrix-valued quark-diquark amplitudes @gg (p, P) which were intro-

duced in Sec. 5.2 feature the following Dirac, color and flavor decomposition:

2
sc 6A
o0 P) = 210 o P) AP}y © T2 @ 1y
o (A.87)
av 5
us0 P) = 2 0 PP A (P} © T2 @ 507
k=1

p is here the relative momentum between quark and diquark and P the total nucleon
momentum on the mass shell: P? = —MZQ\,. The number of basis elements can be
inferred from the Clifford algebra. The positive parity condition for the full Faddeev
amplitude translates into positive parity of the quark-diquark amplitudes. This entails
a maximum number of four and twelve Dirac basis elements for the scalar and axial-
vector quark-diquark amplitudes, with a possible basis for both cases given by

{1, p, o Py, "0 PRy AL 6, PP P (A.88)

The constraint of positive energy for the nucleon, expressed by the positive-energy
projector Ay (P) = (1 + ?)/2, halves the number of basis elements via J}AZ’AJr =A; to
2 Dirac matrices {1, p} for the scalar quark-diquark amplitude and 6 matrices for the
axial-vector one. A partial-wave decomposition in terms of quark-diquark total spin
and orbital angular momentum eigenstates in the nucleon’s rest frame [180,254] leads
to the orthogonal, dimensionless Dirac basis stated in Table A.3. Its orthogonality
relations are

1 1
5 Tr{?k T A+} = (—1)k+1 Ok, 5 TI‘{T'Z TZM A+} = (—1)k Ol (ASQ)

The dominant amplitudes are those corresponding to the s waves 71 and 7{', with a
further addition of s (73'), p (72, 754 ) and d waves (73').

The flavor wave functions of the full nucleon amplitude, constructed from the
Clebsch-Gordan prescription, are given in Eq.(A.75). The flavor matrices t® in the
quark-diquark amplitudes are their ”quark remainders” upon removing the diquark
contributions:

t =uul +ddf =1,

tlz\/gduT:%(al—iag),

(A.90)
t? = —% (uuf —ddf) = —% o3,
3= — %udT = —% (01 + io2)
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3 (p, P) H(p, P)
AW =P =g (0 +3%)
n=fd | =pd =P 7 =7500d-3¢)

I
Sl

S

TABLE A.3: Orthogonal basis for the nucleon quark-diquark amplitudes. We abbrevi-
ated the normalized, transverse relative momentum by ¢* := i pp", where pf. = TH"p”

and T’]i” is the transverse projector with respect to the total nucleon momentum.

A projection onto the proton and neutron isospinors u = (1,0) and d = (0,1) yields
the following flavor wave functions:

([ Vis o). e=(loganyi) o

Delta. Compared to the nucleon, only an isospin-3/2 diquark can contribute to the
spin-3/2, isospin-3/2 A amplitude which excludes the involvement of a scalar diquark.
Denoting the total A momentum by P with P? = —Mg, the on-shell quark-diquark
amplitude ®* of Eq. (5.10) is decomposed into 8 covariant structures [180]:

(0, P)=)_ [ (0%, 2) {7k’ (0, P) P (P)} 5 © (bg ® AT, (A.92)
k=1

8

where the basis elements include the Rarita-Schwinger projector onto positive-energy
and spin-3/2 spinors:

1
PP (P) = A (P)TE* TS (W -3 ry%ﬂ) : (A.93)

A general Green function with two fermion legs, two vector legs and two independent
momenta p and P allows for 40 possible Dirac covariants Tf; P 140> constructed from

AL B Pp Py, Apt PRAY X {pP PP AL p, P p P (A.94)

The elements P?, v?, P and p P become redundant upon contraction with the Rarita-
Schwinger projector: PPIPPY = ~PPP” = 0, PA; = A;. This leaves 8 covariants
for which a convenient orthogonal set is displayed in Table A.4. The corresponding
orthogonality relation reads

1
ZTI‘ {5’;:/)0;“)} = (—1)k+1 5kla (A95)



108 A collection of propagators, vertices and amplitudes

®"(p, P)
T = " = 75 (¢ - 30mg)
Y = =3Py ™" =3 Prg
T = dd =
= dd =0 =3q"q" = (M + a5 q)

TABLE A.4: Orthogonal basis for the A quark-diquark amplitudes, with ¢* := i pp".

where 01" (p, P) = 7" (p, P) P?”(P) and the conjugated amplitude is defined as (the
superscript 7 denotes the Dirac transpose):

7y’ (p, P) = C o} (—p,—P)"C". (A.96)

The basis of Table A.4 again corresponds to a partial-wave decomposition in terms of
quark-diquark total spin and orbital angular momentum in the A rest frame [180,255].
Since there is only one spherically symmetric s-wave component (71"), the A’s deviation
from sphericity amounts to an admixture of p (13, 5), d (13’5 ;) and f (73") waves which
contribute a significant amount of orbital angular momentum to its amplitude.

In the same way as for the nucleon, the isospin matrices of the A quark-diquark
amplitude are constructed via removal of the diquark contributions from the full A
flavor-amplitude. The equivalent of Eq. (A.91) reads:

AT =(0,0,0), A" =(Ld, Zu0),

(A.97)
A0 — (0, 24, %u) A~ =(0,0,d),

V3T V3

where the three entries correspond to the axial-vector diquark’s three symmetric isospin-
1 states. Contraction with the diquark flavor matrices s1'>3 of Eq. (A.35) yields the
final flavor tensors corresponding to the four A states.

Normalization. The quark-diquark amplitudes for nucleon and A are normalized
via the canonical normalization integral of Eq.(2.24). In this context, ¥ is the BSE
solution of the quark-diquark amplitude, G is the product of a dressed quark and
diquark propagator, and K is the quark-diquark kernel (5.13). In contrast to the
meson and diquark case, the kernel depends on the total nucleon momentum P such
that the derivative dK ~!/dP? cannot be omitted. The normalization condition for the
nucleon is equivalent to the normalization of the proton’s electric charge: G%,(0) = 1.
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A.7 Diquark-photon vertex

General properties. With the notation k = (k + k—)/2 and Q = k4 — k_, where
ky and k_ are outgoing and incoming diquark momenta, the general form of the scalar
and axial-vector diquark-photon vertices is (cf. Fig. A.6)

2
Dt Q) =D Y (02 k- Q, Q1) (£, Q). (A.98)

i=1

14
e, Q) = > £V k- Q, Q1) 7 (8, Q) (A.99)

=1

where the set of basis elements is given by
(k@) € {k",Q"},
Pk, Q) € {k*, Q" x {8°° k°k?, Q“QP, k*QP, Q*k}, (A.100)
o1 x {k7,Q°}, 6% x {k*,Q}.
Both vertices satisfy vector Ward-Takahashi identities which reflect electromagnetic

current conservation. They constrain the longitudinal contributions ~ Q" by relating
them to the corresponding diquark propagators:

Q" Tia(k: Q) = D‘l(k+) ~DMko) = QM {2k Ap) )
Q T (k, Q) = Dy j(ky) — Dyj(k-) = (A.101)

anp
=Q" {%ﬂ <A(DT1)5O‘5 — A (k%ﬁ + Qf)) — L) (5“%5 + 5"/%0‘)} :

The average ¥ and difference quotient A were defined in Eq. (A.21). D~!(k?) is the
inverse scalar diquark propagator; D' (k?) and o(k?) := (D;l(k:2) — D;'(k?)) /k? are
the dressing functions of the inverse axial-vector diquark propagator:

D j(k) = D () T + D (k%) Ly = DEM (k%) 62 — o (k) kK7 . (A.102)
The differential Ward identities read:
dD~' (k%) R dD_; (k)
(dQ)(k 0) = Ak Ldg) (k,0) = Tk (A.103)

The final expressions for the vertices upon implementation of the WTIs can be read
off from Eq. (A.101):

g (k: @) = 26 Ap1y + T T7(k, Q) , (A.104)
ap _ QaQﬁ
F?d (k Q) 2kH (A(D;l)éaﬁ — A(U) (/{:akﬁ + 4))

— T (&L%f’ + 5#ﬁka> + T T4 (k, Q). (A.105)
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FIGURE A.6: Momentum routing in the diquark-photon vertex.

Similar to the quark-photon vertex of Section A.2, the physical properties are encoded
in the transverse projection of the vertices (A.104-A.105). The transverse parts include
the elements of (A.100) in which no Q* is involved, implying one further transverse
structure ~ k* in the scalar vertex and nine for the axial-vector vertex. In the axial-
vector case the symmetry requirement

Nes fyole%
T (k, Q) = THS (k, —Q) (A.106)
leads to relations between the transverse dressing functions which reduces the number of
independent components to six [129,256]. The transverse parts must vanish for Q? — 0
and do not participate in electromagnetic current conservation. Nevertheless they give
contributions to magnetic moments and electric quadrupole moments in the case of a
spin-1 diquark. In this respect it is advantageous to add the transverse contribution

% (o) (5’“@5 - WQ“) +
+ A {kz“Qo‘Qﬁ _ % (5anﬁ + 5uﬂQa> } + (A.107)

+ Ay {R (k°Q7 = K7Q7) + k- Q (k7 — #7k) |

to Eq. (A.105). The resulting vertex [256] may be more conveniently written as

D20k, Q) = 20 (A1) — Ay kS K2

d;
) B (A.108)
— (o(k2) 00 kg + o (k2) 0 K2 ) + T4 T4 (h, Q).
In the special case of free scalar and axial-vector propagators, i.e.
D7) = K2+ M2, D) =K+ ML, DpUK) =ML, (A.109)
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the corresponding vertices satisfy

Ap-1y=Ap1y=1, o(k*) =S4 =1, Ay =0. (A.110)

On-shell vertices I. To obtain the electromagnetic current matrix of a spin-0 or spin-
1 particle with mass M, the respective photon vertex must be taken on its mass shell,
where

Q2

4

and hence any transverse projector Tg” acting on k” can be replaced by d*”. This
yields for a scalar diquark:

k? = —M? E-Q=0, (A.111)

T @) =Ty @, o =2 FI@). (A.112)

The electric form factor F;(Q?) is the sum of A(p-1y = 1 and the transverse component
~ k" in (A.104). Electromagnetic current conservation entails

QLIM(Q*) =0, JHO0)=2K", Fi(0)=1. (A.113)

The electromagnetic current of a spin-1 particle is found by applying transverse pro-
jectors with respect to outgoing and incoming diquark momentum (corresponding to
the transverse pole in the propagator) onto the on-shell vertex:

TE2(Q%) = T {Tﬁiﬁ)ﬂ (k, Q) T (A.114)

kszvQQ/zl}

Ignoring all terms which become redundant upon contraction with the transverse pro-
jectors, the on-shell diquark-photon vertex reads [62,258,259]:

QQ"
2M2,

Tl (k, Q) = 2k* <F1 57 + Fy

> Gy (5’“"@5 _ 5“562"‘) , (A.115)

with the three Q?-dependent electromagnetic form factors Fy, Gjs and F3. Again,

F1(Q?) is the combination of Apz1y = 1 and the transverse component ~ k¥ §%8 in
T

(A.108); and current conservation guarantees the relations of Eq. (A.113). G(Q?) is
the magnetic dipole form factor with Gj;(0) = u being the magnetic moment of the
axial-vector diquark. F3(0) is related to an electric quadrupole moment. Note that the
on-shell projection of Eq. (A.108) without its transverse part yields the vertex 2k* §°
while that of Eq.(A.105) already includes a constant contribution to the magnetic
moment: G (Q?) = o(—M?2,).

Eq. (A.115) is of limited use in the description of a baryon as a bound state of quark
and diquark since the internal diquark is always off-shell. Minimal ansédtze for the full
scalar and axial-vector diquark-photon vertices in the literature involve Egs. (A.104)
and (A.108) which ensure the WTT for arbitrary diquark propagators, together with a
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transverse term of Eq. (A.115) including the constant diquark’s magnetic moment and
possibly its electric quadrupole moment [62,63,184]. To account for the suppression of
the generalized form factors corresponding to G s and Fj for non-zero photon momen-
tum and off-shell momenta k, the magnetic moment p must be chosen much smaller
than its point-like value 2 [63]. This issue is not manifest in our calculation where the
diquark-photon vertex is constructed from a different principle, cf. Eq. (A.119).

Scalar-axialvector transition. Electromagnetic transitions between scalar and axial-
vector diquarks appear naturally in the context of nucleon form factors and mediate
a spin flip within the diquark correlation that contributes to the Faddeev amplitude.
These contributions are not constrained by current conservation and hence purely trans-
verse with respect to the photon momentum:

QUTYN = QP T =0, (A.116)

In analogy to the radiative p — 7y decay [87], the transition vertex is described by the
Lorentz structure

ﬁsa<k27i€ . Qa Q2)

Tl (k, Q) = T2 (—k, Q) = ie"%7 QP k°
My

(A.117)

Since in this case the incoming and outgoing diquarks have different mass shells, the
onshell values of the involved momenta are
M2 +M2 Q2 M2 _ M2

k2:—¥ R k-Q:%. (A.118)

Resolving the diquark structure. In the actual calculation we follow an approach
explored in Ref. [99, 182] and express the diquark-photon vertices in terms of the
diquark’s substructure, i.e. by the ”gauged” diquark propagators, cf. Egs.(A.59),
(A.67) and the discussion in Section 6.1:

T4 (k, Q) = Thhin (k, Q) + TA&" (5, Q) + TH* (£, Q) (A.119)

where each of the three terms corresponds to a row in Fig. A.7. This is the most
general form which is consistent with Dyson’s equation for the 2-quark T-matrix. It
satisfies electromagnetic current conservation and provides expressions for the hitherto
unknown transverse components of the vertices in Eqgs. (A.104-A.105). The indices a,
b collect scalar (a,b =5) and axial-vector (a,b = 1...4) quantities as well as possible
scalar-axialvector transitions.

The impulse-approximation part in (A.119) expresses the coupling of the photon to
the quark propagators within the vertex. The two diagrams from the coupling to the
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F1GURE A.7: The fully resolved diquark-photon vertex of Eq. (A.119). The first row de-
notes the impulse approximation (A.120), the second row the seagull coupling (A.121),
and the third row the seagull coupling where the inverse rainbow-ladder kernel is in-
volved, Eq. (A.123).

upper and the lower quark line are equal, cf. Eq. (A.125); their sum yields:
a 1 Ta
Dhih @) = —5 [ e {T(a - @2k S Ta o)
q

. (A.120)
< [sta- + @ty o+ Q256 |

The second row of Fig. A.7 denotes the part of the vertex which owes to the gauged
diquark amplitudes, i.e. the seagulls M#*? MM which are discussed in App. A.8:

s’ (k. Q) = —;/Tr {T(q. k1) S(d}) M*(g. k-, Q) ST(d\) +

B (A.121)
T Mgk, Q) S(an) T k) ST(a)

The internal quark momenta in both integrals are ¢+ = +q+k_/2 and ¢/, = £q+k /2.
In order to satisfy the Ward-Takahashi identities (A.101) for the full diquark propaga-
tors (A.59), the diagrams involving the gauged inverse ladder kernel need to be taken
into account as well. The photon cannot couple to the rainbow-ladder kernel itself
but interacts with the diquark amplitudes, hence its generic form is T'¢ K—1 MY 4
Mt K=1Tb Implementation of the ansatz (A.67) for the parts of the diquark propa-
gators which owe to the kernel,

Dl_(l(Pz) == MSZC {Asc + ﬁsc Fsc(x)}7
)

A.
(DI_(]')NV (P) = va {)\av + Bay Fav( }5;11/’ (A.122)
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yields with Egs. (A.104-A.105) and ok (k?) = 0:

F%’SE)(]{’ Q) = 21{2’“‘ MS2C ﬂSC AF’sc’

(A.123
Pl}‘gaﬁ(k’ Q) = 2]{;# Mzsv 6&V AF‘av7 )

where A again denotes the difference quotient defined in (A.21). Here we neglected
possible further transverse terms and contributions from a scalar-axialvector transition.

On-shell vertices II. Only the impulse approximation Fﬁ\’/}lg, contributes on the di-

quarks’ mass shells and hence to the diquarks’ form factors F; and (in the axial-vector
case) F3, Gpy. Schematically, the full vertex (A.119) is the gauged diquark propagator:

My = {T (o~ K1) =

_ - _ (A.124)
=TGiT+T (Go— K ") M"+ M" (Go— K" T.

The seagull contributions vanish on the mass shell because of the diquark bound-
state equation: KGol' = I'. They are nonetheless necessary to guarantee the Ward-
Takahashi identities for general off-shell momenta, and they ensure transversality for
the scalar-axialvector transition vertices which can be shown using the relations (A.39)
for the Dirac parts of the diquark amplitudes that follow from the general antisymmetry
relation (A.36).

At the physical u/d mass, the vertex (A.119) together with the input (C1) of Sec-
tion 3.2 yields the on-shell values p,y = 2.7 and kg, = 2.3. These are in the ballpark of
values used to calculate nucleon electromagnetic form factors [62,184] in combination
with the ansétze (A.104), (A.108), (A.115) and (A.117).

Color and flavor. The color and flavor factors in Eq.(A.119) have already been
worked out. The color trace for all contributions is 1. The flavor-charge traces yield
e = ey = eqq/2 = 1/2 in the scalar and axial-vector case and e = —e; = 1/2,
edq = 0 for the transition vertex (e+ and eqq appear in the definition of the seagulls, cf.
App A.8). For instance, using the diquark flavor matrices s; (i = 0...3) of Eq. (A.35)
entails that the impulse-approximation contribution (A.120) is given by

Tr {s/5;Qp A%+ e {sf Qs b A =2 {sf 5y @ A2, (A.125)

where Q = diag(qu, gq) is the quark electric charge matrix, and A1 denotes the photon’s
coupling to the upper and lower quark line, respectively. In App. A.9 the diquark charge
factors
Qu+3qi| 0 ga—¢qu O
omfsisqr=| O [ 00 (A.126)
94— qu| 0 qu+qs O

0 [0 0 2

are explicitly attached to the current matrix diagrams at each occurrence of the diquark-
photon vertex.
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A.8 Seagulls

Seagull contributions represent the photon’s coupling to the scalar and axial-vector di-
quark amplitudes. They are fermion-scalar-vector and fermion-axialvector-vector four-
point functions and, together with the diquark-photon vertex, reflect the diquark’s
internal substructure.

Ward-Takahashi identities. The seagull WTIs were derived in [183,260] and read

Q'M*"(q, P,Q) = +e_{T(¢qy,P) —T(q, P)}
+ey {T(q—,P)—T(q,P)}
—eqq{L(q,Py)—T(q, P)} ,
o _ B (A.127)
Q“M”(q’ P, Q) = — €4 {F(Q+7P) - F(Qv P)}
—e {I(q-,P)—T(q,P)}
+ €eqq {f(q’P,) - f(qvp)} 5

where ¢ is the relative momentum, P is the diquark’s total momentum, @ is the photon
momentum, ¢+ = ¢£Q/2, and Py = P+(Q. The charges e, e_ and eg4y correspond to
quark and diquark legs (cf. Fig. A.8). For @ — 0 the WTIs reduce to the differential
Ward identities:

e —ey d d
M*(q, P,0) = — —eqq— | I'(q, P
(@ 120) ( 2 dgr dPﬂ) ) (A.128)
— e- —eq d d \ = '
M"(q, P,0) = > dgn  Clagpn ) L@ )

Dominant diquark amplitudes. In the case where only the dominant diquark
amplitudes are retained and their dressing functions f; (either scalar or axial-vector)
depend solely on ¢2, i.e.

Lsoq, P) = [*(¢*)in°C,  Th(a. P) = f(¢°) in"C, (A.129)
the scalar WTI (and the axial-vector WTI accordingly) reduces to

Q"M*(q,P,Q) = e—{T(q+,P) —T(q,P)} + e {T'(q-,P) —T(q, P)} =

A.
Qe (a+ QM AF ey (- Q4 A7) (4130

with the difference quotient

v fad) - f(@®) | flad) = fld?)
A= G-¢ @rQM-Q (A-131)
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F1GURE A.8: Conventions for the seagulls. In accordance with the Ward-Takahashi
identity (A.127), outgoing charges are taken to be positive, incoming charges as nega-
tive.

The expressions for the seagulls which are consistent with the WTI can be immediately
read off from Eq. (A.130), cf. Refs. [62,99,183,184]:

M#(g, P,Q) = {e_ (g +Q/4)" Af —es (4 - Q/4* AT }ir°C,

(A.132)
{e— (¢ +Q/4" AT — et (g — Q/4)* A}} i*C.

M"(q, P,Q)

The seagulls vanish if the diquark amplitudes are taken to be pointlike, i.e., f| = const.
and all other f; = 0.

Full diquark substructure. The situation becomes naturally more complicated if
the full diquark substructure, i.e. all the remaining Dirac covariants, are taken into
account. By virtue of the WTT (A.127), the difference quotients in {q+, ¢} and {Py, P}
must be evaluated in all variables which appear in the diquark amplitude. The resulting
expressions are lengthy yet necessary to guarantee the differential Ward identity. A
violation of the latter inevitably contaminates the small-Q? structure of the nucleon’s
electromagnetic form factors and can lead to sizeable deviations from the neutron’s
zero electric charge.

To simplify the discussion, we transform the diquark basis of the amplitudes (A.51)
with dressing functions fi(g?,0, —M?), given in Table A.2, into the general (unnormal-
ized) form

Tkil...4(q’ P) = {]17P7 gv ﬁP}v
Tﬁzl...S(q’P) :’7”{]17P7 gv QP}v qu{]LP? g? gP}a
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such that the diquark amplitudes read:

4
Tiolg, P) = Y fi(¢®,q¢-P,P*) m(q, P) ir°C,

o (A.133)
T4(q,P) = Y f¥(q* q-P,P*)7/(q, P)iC.

k=1

The new coefficients f7° and f;V are the respective linear combinations of the those in
Eq. (A.51) and pick up a dependence on the variables ¢ - P = \/qﬁx/ﬁz and P2. In
the following we drop the superscripts ’s¢’ and ’av’ for the purpose of brevity.

In the same way as encountered in previous examples, the strategy to obtain a
certain vertex (free of kinematic singularities) from its WTT is to write Eq. (A.127) as
a sum of difference quotients in one variable and extract a factor Q* from the linear
terms. For example, the first row in the scalar-diquark WTI yields

{ (Q+7 ) F( )}( CT 5)

=> (fk ¢t 4+ P, P?) mi(ar, P) = fr(d®,q- P, PQ)Tk(%P))
k

= > [A) fila? 2 P (@ - ¢®) melas, P) +
k

+

Z[Ammfk 7qPP)}( P —q-P) (qy, P)+
k

+ Y fuld 2, P?) (Tk(Q+aP)_Tk(Q7P)>
k

where A() denotes a difference quotient with respect to the variable (), e.g.:

’,qx-P, P?) — f(¢* q-P, P?)
AP g2 . P P?) = fla" gz, LS ) A.134
fla*q ) P —qP ( )
Expressing the @-linear terms through scalar products with Q*,
- P
(- ) =+Q- (£ QM) (gz-P—qP) =+ 2L, (A.135)

2

allows to read off the respective vertex contributions. The differences in the basis
elements 74 (q+, P) — 7,(q, P) only contribute for k = 3,4. Proceeding this way yields
the following form for the scalar and axial-vector seagull vertices:

M*(q, P,Q) = (Ml'(q, P,Q) + ML (4, P,Q) ) in*C

(A.136)
MP(g, P,Q) = (M{**(¢, P, Q) + M{**(q, P, Q) ) iC
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where the M f @ include the difference quotients of the diquarks’ dressing functions fg:

S

(8)

{e- Vi as, P) + e (VO 7 (0 P) = eag Vi 787 (a, P |
k=1

The quantities (Vi)! and (Vi) are free of kinematic singularities and given by

PH

(Va)li = + |A6D) fi(?, q-P, P)| (g £ Q/4)" & AP fi (¢ q-P, P)| -

(Ve)f =+ |APD i@ q-P.PY)| (2P £ Q) = [ATPD (g q-P.P)| ¢

Their limits for vanishing photon momentum are

o ) L
(A.137)
(Vo) 20, 4 (ZP“Z‘; + q“d(il]]?;)> =+ j—ﬁ.
The MY contain the differences of the basis elements:
My == ; A (f3 + falP) — eag(fo+ fad)r"
MY = ST L (f o fuP) + 8 (s + So) + (374 + °9")(Fr + fsP) )
= + QU (fr + fsP) — edq{va(h + fad) + ¢*(fo + fsﬁ)}v“

Together with (A.137) this allows for a simple check of the Ward identities (A.128).
The final seagull vertices (A.136) are identical to those introduced in Ref. [129]; yet
the form (A.133) allows for a somewhat simplified notation. The conjugate seagulls are
obtained from

M*(q, P,Q) = —=C(M")"(=¢,—P,Q) C"
Mﬂ7a(q7 P7 Q) = C(MMQ)T(_(L _P7 Q) CT

Transverse terms. In the same way as encountered for the quark-photon and diquark-
photon vertices, further terms transverse to the photon momentum may also contribute
to the seagull vertices. Such contributions were found to be important for the medium-
Q? structure of electromagnetic form factors [113]: ignoring them may cause form
factors to rise with increasing photon momentum which is clearly unphysical. In the
absence of a constraint on the seagulls’ transverse structure, a minimal ansatz is to
introduce a contribution which is proportional to the seagull itself:

M = MM () T MY = (1 — m(x)) T4 MY + Ly MY, (A.138)
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where z = Q?/ mg (the introduction of the p-meson mass scale will be explained be-
low). To avoid a kinematic singularity, the dimensionless function m(z) must vanish at
zero photon momentum but is otherwise arbitrary. Via electromagnetic current con-
servation only the transverse projection of the vertex contributes to observables, hence
Eq. (A.138) is physically equivalent to multiplying the full vertex M #(@) by a function
1 — m(x) which is modeled on phenomenological assumptions.

In the approach presented herein, the diquark-photon vertex is obtained by resolving
the diquark’s substructure which exposes its constituents, i.e. the quark propagator,
quark-photon vertex and seagull amplitudes. Resolving the seagull structure is not
feasible in our context, yet it is a reasonable strategy to model the transverse seagull
part after that in the quark-photon vertex which would remain as fundamental quantity
is such an approach. Specifically, we use the following parametrization:

1 22

_ —p3 (1+z) A.139
gp 1+ c ’ ( )

m(x) =

which resembles (A.28) and again includes a transverse vector-meson pole with residue

1/g,. The additional factor = in the numerator was implemented to leave the nucleon’s

static properties such as magnetic moments and charge radii unchanged via m’(0) = 0.
In connection with the parameter pa which appears in (A.28), the values

p2 = 0.001, p3=0.075 (A.140)

optimize agreement with the polarization-transfer data for the proton’s form factor
ratio G g(Q?)/Gu(Q?) and thereby enable a realistic Q2-evolution of the nucleon form
factors. Nevertheless we emphasize that the implementation of the transverse seagull
term (A.138) has no noticeable consequences for the form factors’ small-Q? behavior,
i.e. for photon momenta Q? < 2 GeV?.

A.9 Nucleon electromagnetic current in the
quark-diquark model

In this appendix we collect the ingredients of the nucleon’s electromagnetic current
matrix in the quark-diquark model, given by the terms in Eq. (6.17) and depicted in
Fig.6.2. They depend on the quark-photon vertex I'f, the scalar and axial-vector
diquark photon vertices I'" . and the seagull vertices M* which have been specified in
Apps. A.2, A.7 and A.8. The explicit form of the current is given by

Jgﬁ(Qz)://[‘P“(pf’Pf)X“’“"(pf,pi,Pf,B-)@b(pi,B)] , (A.141)

af
Pf Pi

where P; and Py = P; + @ are incoming and outgoing on-shell nucleon momenta. The
loop momenta p; and py are arbitrary. «,3 = 1...4 are quark and a,b =1...5 are
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diquark indices. The quark-diquark amplitudes ®% are the solutions of the quark-
diquark Bethe-Salpeter equation (5.12). The quantity X #ab s given by

Xmab = X 2m) 6t (pr —pi — (1 — 1) Q) +

b jab (A.142)
+ X5 2m)'6t (pr —pi 0 Q) + XLV,

and involves the quark and diquark impulse-approximation diagrams (the left column
in Fig.6.2):

(Xo)hs" = [5 (p+) T4 (p4,p-) S (p—)]a BD“b(pd—) , (A.143)
(Xaq)25" = Sap(p-) [ D (pas) T4 (passpas) D" (pa)| (A.144)

and a two-loop diagram which represents the gauged quark-diquark kernel (right col-
umn of Fig. 6.2):

(Xh5" = D (pa) [Ss) K (700, Pr. P) S(p-)] D™ (pa). (A145)

af

The quark-photon coupling X4* connects scalar (a,b = 5) or axial-vector (a,b =
1...4) amplitudes whereas X g(’lab and X[" additionally allow for scalar-axial-vector
transitions. The quark and diquark momenta are:

p- =pi+nk;, pi— = -—pi+(1—n)F;,
p+ =pf+nPy, pa+ = —pf+ (1 —n) Py .

The gauged kernel K*? which appears in (A.145) contains the exchange-quark diagram
and the seagull contributions:

Jab b b Jab
KM = KEy +K”a —i—Kgg , (A.146)
with
T_
KE = Thy(p1,pa-) [S(@) D401 0) S(@)] T (. pas)
KE5" = M0 (k1. pa-, Q) ST () T (2, pa) (A-147)

Kg o qu(phpd )ST(q) Mﬂ,a(k27pd+aQ)a

and momenta:

P+ —4q p-—¢q

q = Pd— — P+, p1 =

7/ p—
P | hy— D=1

¢ =pi+ —p-,
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Breit frame. For explicit calculations we work in the Breit frame where ingoing and
outgoing nucleon have opposite 3-momenta and the photon consequentially carries zero
energy. With 7 = Q2/(4M?), the momenta read:
0 0 0
0 0 Pr+ P 0
Py =iM , . Q= o p=th iy

’ +i/T Q| 2 0

Vi+r 0 147

Color, flavor and charge coefficients. The current matrix diagrams still have to
be endued with color and flavor-charge coefficients. The color traces for the impulse
approximation and exchange/seagull diagrams are given by

0pA 0B _ | 0BA €AED €CEB OcD _ | (A.148)

V3V VB V2 V2 B ’
respectively. With the diquark and quark-diquark isospin matrices of Egs. (A.35) and
(A.90): sj and tj, ¢ = 0...3, and the quark charge matrix Q = diag(qy, ¢4), the flavor-
charge matrices for the quark-photon, diquark photon and exchange diagrams read:

Yo sstlQy, Zt?tﬂTr{siTsz} ;D Qs (A.149)
i ij ij

The traces for proton and neutron are obtained by sandwiching these expressions be-
tween the isospinors u = (1,0) or d = (0,1). The index range in 4, j of the sums in
(A.149) depends on the type of the quark-diquark amplitude in the initial and final
state: for a scalar quark-diquark amplitude in the final state (i.e., on the left-hand
side): ¢ = 0, for an axial-vector amplitude: ¢ = 1...3, and likewise for the index j and
an incoming amplitude. For instance, with the four contributions:

S«S: uT(tgsonéto)u:q—;,

: 2qu + ¢
S+ A: Zt sJngtj u=_du4d
: 2v/3

J:
& 2qutq
. i u + Gd
A—S: uf (Z’tl SoQS to) 2[ ,
3

i=1
3 da. _
A A ZZ 5 Qst “Z—%a

the full exchange contribution to the proton’s electromagnetic current (including the
color factor) is given by
Aqu —

6

44 2qu + qa
I = 5 55 + ——= 23 (JEX + Jhs) + JAA ; (A.150)
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where J]S*jgf, Jgf_}(, JE§ and Jgil( denote the Dirac parts of the exchange contributions in
Eq. (A.141). For the seagull diagrams, the coupling of the photon to both quark lines
and the diquark line in the seagull vertex (cf. Fig. A.8) need to be taken into account;
hence all occurences of e_, ey and e4, must be replaced by the combined flavor-charge
factors

SG: 6’,—>ZtiTSjQSith, 6+—>Zt?QSjSith,
€dq —>ZtiTSjSith 2TI‘{SJ-TSJ'Q},
]
SG: 6_—>ZtiTSjQSith, €+—>Zt;rSJSiTQtj,

1 i

€dqg — Zt:f Sj Sithj 2Tr {S:r S;i Q}
]

and equipped with an overall color factor —1.



Appendix B
Utilities

B.1 Euclidean conventions

Throughout this thesis we work in Euclidean momentum space with the conventions

4

p'q:Zquk, Pr=p-p, p=p-y, ATy =286, A= (B
k=1

A vector is spacelike if p? > 0 and timelike if p?> < 0. Moreover:

i 1
o == ], = i = Ty (B.2)

The standard representation for the gamma matrices reads:

0 —iok 1 0 0 1
k 4 5
- , = , - ) B.3
7 (iak 0 ) 7 (0 —11) 7 (11 0) (B-3)

The charge conjugation matrix is defined as
C=9", Cc"=cl=Cc"'=-C (B.4)
We express four-momenta through hyperspherical coordinates:

V1—224/1—9y%sing sin 1) sin @ sin ¢
b R V1—22y/1—-y?cos¢ | | sine sinf cos¢ (B.5)
Pe=vr V1—-22 y | sine cosé . '

z cos Y

Should p describe the on-shell momentum of a bound state with mass M, then: p? =
—M?, and in the rest frame: z = 1. A four-momentum integration reads:

00 1 1 21

! = /(2&:54 = (zi)4;0/dp2p2/dzM/dy/d¢. (B.6)
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B.2 Angular dependence

The Lorentz-invariant coefficients of bound-state amplitudes depend on Euclidean scalar
products of the involved momenta. Denoting the relative momenta by p; and the total
bound-state momentum with P, where P? = —M?, the coefficients f}, (p?, z;) carry a
dependence on radial and angular variables

7, zi=cosp; =P P, pr-pa, ... . (B.7)

In the rest frame of the respective bound state: p? € (0,00) and z € (—1,1). A
polynomial expansion in the radial arguments is not practicable as the p? dependence
of the amplitudes can differ enormously for different amplitudes fr: individual zero
crossings might appear, and the specific power laws for p? — 0, p? — o0 depend on
the choice of Dirac covariants (e.g., normalized vs. unnormalized) and the inherent IR
and UV properties of the physical problem.

On the other hand, the dependence on the angular variables z; is usually weak and
well-suited for an expansion into orthogonal polynomials. We denote these generically
by Y,(z), n € Ny, where the (continuous and discretized) orthogonality relations are
given by

/ dzQy (2) Y, (2) Yo(z) = lim ZQY 21) Y (21) Yo (21) = Omm (B.8)

N—oo

and thus allow for an expansion of a function f(z) via

1

/ 4z Oy (2) Y7(2) £ (2)

(z) = lim an n( fa=1< 21 N (B.9)
N—»oo — ~
= i >0y () i ) (20
k=1

Chebyshev expansion. The common use of Chebyshev polynomials in the bound-
state framework is motivated by an approximate O(4) symmetry in a certain type of
ladder-exchange Bethe-Salpeter equations [72] . For | = 0, i.e., for s-wave ground-
state wave functions in the context of quark models, the hyperspherical harmonics
Voim (¥, 8, ¢) reduce to Chebyshev polynomials of the second kind in the cosine of the
azimuthal angle 1. The Chebyshev polynomials of the first (7},) and second kind (U,,)
are given by

To(z) :== % [(z—i— 22 — 1) + (z— 22 — 1)?
— cos (narccos z) = li[ [ 2 — cos (k - ;) ﬂ - =D g

Un(z) = sin [(n + 1) arccosz] _ li[ [ 2 — cos J ., (n>0)

V1—22
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with Tp := 1/v2 to satisfy the orthogonality relation of Eq. (B.9) together with (B.12).
For n > 0 the Chebyshev polynomials of the second kind are related to the 7;,(z) via
T.(z) = Up(2) — 2Up—1(2). The first few Chebyshev polynomials (n > 0) are

Tn(z):{%, z, 222 — 1, 42° — 3z, 82 — 822 + 1, },

(B.11)
Un(z) = {1, 22, 42 — 1, 823 — 4z, 162" — 1222 +1, ... }.

For the explicit expansion in Eq. (B.9) one uses Y,,(z) = i" T,,(z) or Y, (2) = " U,(2),
for each of which the continuous and discrete integral measures are given by

2 1 ~ 2 1
¥ Qp(z) == i Qr(zp)=—=, zr=cos|k—= 1;
T/1— 22 N 2) N
2 2(1 — 22) k (B12)
nd . _ /12 Q _ ~ %k — m
2 : QU(Z) o 1 z°y QU(Zk) N1 , 2k COS N1

The 2z (k=1...N) which appear in the discrete versions were chosen to be the roots
of the respective polynomials Ty (z) or Un(z) which, for finite N > N, optimizes the
agreement between the coefficients f,, that appear in the expansion and the projection
of (B.9) [72].

A Lorentz boost of the bound-state amplitude leads the domain of the angular
arguments z = p; - P into the complex plane whereas the rest-frame solution of the
bound-state equation is given only for z € (—1,1). While a Chebyshev expansion allows
for a straightforward analytic continuation within the convergence radius |z| < 1, its
convergence properties are lost for |z| > 1 with increasing N. As a possible workaround
one may drop the ideally weak dependence on z altogether, as it was done for the off-
shell diquark amplitudes in Eq. (A.51). In the context of nucleon form factors, where
the nucleon amplitude is evaluated in the Breit frame, one may alternatively introduce
a different expansion variable zg with |zg| < 1 for each value of the photon momentum
Q? [63]. In general the problem can be overcome by solving the bound-state equation
in each boosted Lorentz frame anew where the dependence on the complex variable z
is substituted into two real arguments z; 2 € (—1,1) [86].

B.3 Limitations from the singularity structure

For a bound-state equation which is solved in the rest frame, the radial arguments p%
of the off-shell Green functions which appear in the equation’s kernel become complex
as well. In the following discussion we denote the associated momenta p; generically by
P(x), where X is e.g. a quark propagator, a diquark propagator or a diquark amplitude.
For instance, the arguments of the quark propagators S(£¢+) in the meson BSE (3.9)
read

Psy) =4+ =q+oP,

B.13
p(sg):Q—:—qu(l—U)P- ( )
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While ¢ € R*, the square of the on-shell meson momentum is complex: vV P2 = iM,
and thus also p%X), e.g.

Plsyy = laf* —o* M +2ioM|q| G- P.

Another example is given by the quark and diquark propagators in the quark-diquark
BSE (5.12):
D(sy) = kq=k+nP,
P(sy) i =q=-Dp—k+(1-2n)P, (B.14)
ppy =ka=—-k+(1—-n)P,

where p, k € R*. Egs. (B.13-B.14) can be summarized as

px) = Rx +Bx(n) P, (B.15)

where Rx € R* denotes the sum of all involved real momenta (e.g. the integration vari-
ables) and P is the bound-state momentum which satisfies P? = —M?2. The coefficients
Bx € R depend on an arbitrary momentum partitioning parameter n € [0, 1].

The complex arguments p%X) are sampled on a domain

pix) = |RI* = B?M? + 2i SM|R| Z (B.16)

where we defined Z := R- P € (—1,1). This is the interior of a parabola (|R| % i3 M)?
whose apex —32M? depends on the bound-state mass. It is constrained by the occur-
rence of the nearest singularity in the quantity X which defines the limiting parabola

p%X)Jnax = (t + Z’ran)2 ’ te IR+ ) (Bl?)

where mx is the respective pole mass (e.g., m, of Fig. 3.6 for the complex conjugate
poles in the quark propagator, My., M, for the timelike poles in the diquark propagator
and so forth). This leads to a restriction M < mx/|Bx(n)|, and in total to an upper
limit for the bound-state mass:

. mx, my,

M < gl = min | i e ) (13
Physics must be independent of 7, as explicitly demonstrated in [86,180]. As a con-
sequence one can fix the momentum partitioning n to that value ng which maximizes
the upper boundary f(n) for the calculable mass M. Assuming isospin symmetry with
equal current-quark masses, M. < May, My < 2m, and a singularity-free diquark
amplitude, exemplary values are:

e Meson/diquark BSE: ng = 1/2, M < 2m,,
e Quark-diquark BSE: ng = my/(mq + Ms), M < mgq + My,
e Faddeev equation: 79 = 1/3, M < 3m,.
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If the bound-state momentum P in Eq. (B.15) is replaced by the Breit momentum with
P? = —(M? + Q?/4), the above considerations can be applied to the nucleon form
factor diagrams as well. The result
Q?
M2+ < 1) (B.19)
implies an upper limit for the photon momentum if the nucleon mass M is already
known:

e Quark-diquark BSE: Q2 < 4 [(mq + Mg.)? — MQ] ,
e Faddeev equation: Q* < 4 [(3mg)? — M?].

This is typically in the range of several GeV? and explains the restrictions encountered
in Section 6.3. Refined numerical methods, such as an inclusion of pole residues, are
necessary to circumvent these limitations and establish a connection with the large-Q?
domain in the form factors.
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