
Appendix B

Poincaré group

Poincaré invariance is the fundamental symmetry in particle physics. A relativistic
quantum field theory must have a Poincaré-invariant action. This means that its fields
must transform under representations of the Poincaré group and Poincaré invariance
must be implemented unitarily on the state space. Here we will collect some properties
of the Lorentz and Poincaré groups together with their representation theory.

B.1 Lorentz and Poincaré group

Lorentz group. We work in Minkowski space with the metric tensor g = (gµν) =
diag (1,−1,−1,−1), where the scalar product is given by

x · y := xT g y = x0y0 − x · y = gµν x
µyν = xµ y

µ. (B.1)

Instead of carrying around explicit instances of g, it is more convenient to use the index
notation where upper and lower indices are summed over. Lorentz transformations are
those transformations x′ = Λx that leave the scalar product invariant:

(Λx) · (Λy) = x · y ⇒ xTΛT gΛ y = xT g y ⇒ ΛT gΛ = g . (B.2)

Written in components, this condition takes the form

gαβ = gµν Λµα Λνβ . (B.3)

Since the metric tensor is symmetric, this gives 10 constraints; the Lorentz transfor-
mation Λ is a 4 × 4 matrix, so it depends on 16 − 10 = 6 independent parameters. If
we write an infinitesimal transformation as Λαβ = δαβ + εαβ + . . . , then it follows from
Eq. (B.3) that εαβ = −εβα must be totally antisymmetric.

The transformations of a space with coordinates {y1 . . . yn, x1 . . . xm} that leave the
quadratic form (y2

1 + · · · + y2
n) − (x2

1 + · · · + x2
m) invariant constitute the orthogonal

group O(m,n), so the Lorentz group is O(3, 1). The group axioms are satisfied; there
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Figure B.1: Invariant hyperboloids for the Lorentz group. Rotations go around circles and
boosts in fixed directions n along the surface.

is a unit element (Λ = 1), and each Λ has an inverse element because it is invertible:
ΛT gΛ = g ⇒ (det Λ)2 = 1 ⇒ det Λ = ±1. Eq. (B.3) also entails

gµν Λµ0 Λν0 = (Λ0
0)2 −

∑

k

(Λk0)2 = 1 ⇒ (Λ0
0)2 ≥ 1 . (B.4)

Depending of the signs of det Λ and Λ0
0, the Lorentz group has four disconnected

components. The subgroup with det Λ = 1 and Λ0
0 ≥ 1 is called the proper or-

thochronous Lorentz group SO(3, 1)↑; it contains the identity matrix and preserves
the direction of time and parity. The other three branches can be constructed from a
given Λ ∈ SO(3, 1)↑ combined with a space and/or time reflection:

• SO(3, 1)↑× spatial reflections: Λ0
0 ≥ 1, det Λ = −1

• SO(3, 1)↑× time reversal: Λ0
0 ≤ −1, det Λ = −1

• SO(3, 1)↑× spacetime reflection: Λ0
0 ≤ −1, det Λ = 1

Lorentz transformations preserve the norm x2 = x · x in Minkowski space, which
is positive for timelike four-vectors, negative for spacelike vectors, or zero for lightlike
vectors. Therefore, they are transformations along the hypersurfaces of constant norm
(Fig. B.1). For a four-momentum with positive norm p2 = m2 these are the forward
and backward mass shells. For vanishing norm the hypersurface becomes the light
cone, and for negative norm the hyperboloid lies outside of the light cone.

Each Λ ∈ SO(3, 1)↑ can be reconstructed from a Lorentz boost with velocity β = v
c

in direction n (with |β| < 1) together with a spatial rotation R(α) ∈ SO(3):

Λ =


 γ γ β nT

γ β n 1+ (γ − 1)nnT




︸ ︷︷ ︸
L(β)


 1 0T

0 R(α)




︸ ︷︷ ︸
R(α)

, γ =
1√

1− β2
. (B.5)

In the nonrelativistic limit |β| � 1⇒ γ ≈ 1 this recovers the Galilei transformation.
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The six group parameters can therefore be chosen as the three components of the
velocity βn and the three rotation angles α. One can show that interchanging the
order in Eq. (B.5) yields

Λ = L(β)R(α) = R(α) L
(
R(α)−1 β

)
. (B.6)

The rotation group SO(3) forms a subgroup of the Lorentz group (two consecutive
rotations form another one) whereas boosts do not: the product of two boosts generally
also involves a rotation as in Eq. (B.6). There are two properties that will become
important later in the context of representations: the Lorentz group is not compact
because it contains boosts (hence all unitary representations are infinite-dimensional);
and it is not simply connected because it contains rotations (so we need to study the
representations of its universal covering group SL(2,C)).

Poincaré group. Actually, the fact that the Lorentz group leaves the norm x2 of a
vector invariant is not enough because on physical grounds we need the line element
(dx)2 = gµν dx

µdxν = c2(dt)2 − (dx)2 to be invariant. This guarantees that the speed
of light is the same in every inertial frame, and it allows us to add constant translations
to the Lorentz transformation:

x′ = T (Λ, a)x = Λx+ a. (B.7)

The resulting 10-parameter group which contains translations, rotations and boosts
is the Poincaré group or inhomogeneous Lorentz group. We can check again that the
group axioms are satisfied: two consecutive Poincaré transformations form another one,

T (Λ′, a′)T (Λ, a) = T (Λ′Λ, a′ + Λ′a) , (B.8)

the transformation is associative: (T T ′)T ′′ = T (T ′ T ′′), the unit element is T (1, 0),
and by equating Eq. (B.8) with T (1, 0) we can read off the inverse element:

T−1(Λ, a) = T (Λ−1,−Λ−1a) . (B.9)

In analogy to above, the component which contains the identity T (1, 0) is called
ISO(3, 1)↑, where I stands for inhomogeneous. This is the fundamental symmetry
group of physics that transforms inertial frames into one another.

Poincaré algebra. Consider now the representations U(Λ, a) of the Poincaré group
on some vector space. They inherit the transformation properties from Eqs. (B.8–B.9),
and we use the symbol U although they are not necessarily unitary. The Poincaré
group ISO(3, 1)↑ is a Lie group and therefore its elements can be written as

U(Λ, a) = e
i
2
εµνMµν

eiaµP
µ

= 1 + i
2 εµνM

µν + iaµP
µ + . . . , (B.10)

where the explicit forms of U(Λ, a) and the generators Mµν and Pµ depend on the rep-
resentation. Since εµν is totally antisymmetric, Mµν can also be chosen antisymmetric.
It contains the six generators of the Lorentz group, whereas the momentum operator



4 Poincaré group

Pµ is the generator of spacetime translations. Mµν and Pµ form a Lie algebra whose
commutator relations can be derived from

U(Λ, a)U(Λ′, a′)U−1(Λ, a) = U(ΛΛ′Λ−1, a+ Λa′ − ΛΛ′Λ−1a) , (B.11)

which follows from the composition rules (B.8) and (B.9). Inserting infinitesimal trans-
formations (B.10) for each U(Λ = 1 + ε, a), with U−1(Λ, a) = U(1 − ε,−a), keeping
only linear terms in all group parameters ε, ε′, a and a′, and comparing coefficients of
the terms ∼ εε′, aε′, εa′ and aa′ leads to the identities

i
[
Mµν ,Mρσ

]
= gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ , (B.12)

i
[
Pµ,Mρσ

]
= gµρP σ − gµσP ρ, (B.13)

[Pµ, P ν ] = 0 (B.14)

which define the Poincaré algebra. A shortcut to arrive at the Lorentz algebra rela-
tion (B.12) is to calculate the generator Mµν directly in the four-dimensional represen-
tation, where U(Λ, 0) = Λ is the Lorentz transformation itself:

U(Λ, 0)αβ = δαβ + i
2 εµν (Mµν)αβ + · · · = Λαβ = δαβ + εαβ + . . . (B.15)

This is solved by the tensor

(Mµν)αβ = −i (gµα δνβ − gνα δµβ) (B.16)

which satisfies the commutator relation (B.12).
We can cast the Poincaré algebra relations in a less compact but more useful form.

The antisymmetric matrix εµν contains the six group parameters and the antisymmetric
matrix Mµν the six generators. If we define the generator of SO(3) rotations J (the
angular momentum) and the generator of boosts K via

M ij = −εijk Jk ⇔ J i = −1
2 εijkM

jk , M0i = Ki , (B.17)

then the commutator relations take the form

[J i, J j ] = iεijk J
k,

[J i,Kj ] = iεijkK
k,

[Ki,Kj ] = −iεijk Jk,

[J i, P j ] = iεijk P
k,

[Ki, P j ] = iδij P0,

[Ki, P0] = iP i,

[P i, P j ] = 0,

[J i, P0] = 0,

[P i, P0] = 0 .

(B.18)

If we similarly define εij = −εijk φk and ε0i = si, we obtain

i
2 εµνM

µν = iφ · J + is ·K . (B.19)

J is hermitian but, because the Lorentz group is not compact, K is antihermitian
for all finite-dimensional representations which prevents them from being unitary.
From (B.18) we see that boosts and rotations generally do not commute unless the
boost and rotation axes coincide. Moreover, P0 (which becomes the Hamilton operator
in the quantum theory) commutes with rotations and spatial translations but not with
boosts and therefore the eigenvalues of K cannot be used for labeling physical states.
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Casimir operators. The Casimir operators of a Lie group are those that commute
with all generators and therefore allow us to label the irreducible representations. The
Lorentz group has two Casimirs which are given by

C1 = 1
2 M

µνMµν = J2 −K2 , C2 = 1
2 M̃

µνMµν = 2J ·K . (B.20)

The ’dual’ generator is defined in analogy to Eq. (1.14): M̃µν = 1
2 εµναβM

αβ. Us-
ing [AB,C] = A [B,C] + [A,C]B it is straightforward to check that both operators
commute with Mµν ; they are Lorentz-invariant.

Unfortunately, when we turn to the full Poincaré group C1 and C2 do not commute
with Pµ, so they are not Poincaré-invariant. In turn, P 2 = PµPµ is invariant; from
Eqs. (B.13–B.14) it is easy to see that it commutes with all generators Pµ and Mµν

(for example, the contraction of (B.13) with Pµ gives zero). P 2 is therefore a Casimir
operator of the Poincaré group. The second Casimir is the square W 2 = WµWµ of the
Pauli-Lubanski vector

Wµ = −1

2
εµρσλM

ρσP λ . (B.21)

Since Wµ is a four-vector, W 2 is Lorentz-invariant and must commute with Mµν . Wµ

commutes with the momentum operator because of Eq. (B.13), [Pµ,W ν ] = 0, and
therefore also [Pµ,W 2] = 0. Hence, both P 2 and W 2 are not only Lorentz- but also
Poincaré-invariant. Written in components, the Pauli-Lubanski vector has the form

W0 = P · J , W = P0 J + P ×K . (B.22)

Working out W 2 in generality is a bit cumbersome, but for P 2 = m2 > 0 we can define
a rest frame where P = 0. In that frame one has W0 = 0, W = mJ and W 2 = −m2J2.
The eigenvalues of J2 in the rest frame are j(j+1), but since W 2 is Poincaré-invariant,
so must be j. Here lies the origin of spin: from the point of view of the Poincaré group,
the mass m and spin j are the only Poincaré-invariant quantum numbers that we can
assign to a physical state.

We can derive this in another way so that also the connection with the Casimior
operators (B.20) of the Lorentz group becomes more transparent. Define the transverse
projection of Mµν with respect to P :

Mµν
⊥ := Tµα T νβMαβ with Tµν = gµν − PµP ν

P 2
. (B.23)

Because the components Pµ commute among themselves and also with P 2, they also
commute with the transverse projector,

[Pµ,Mρσ
⊥ ] = [Pµ, T ρα T σβMαβ] = T ρα T σβ [Pµ,Mαβ]

(B.13)
= 0 , (B.24)

and the commutator relations (B.12–B.14) become

i
[
Mµν
⊥ ,Mρσ

⊥
]

= TµσMνρ
⊥ + T νρMµσ

⊥ − TµρMνσ
⊥ − T νσMµρ

⊥ ,[
Pµ,Mρσ

⊥
]

= 0 , (B.25)

[Pµ, P ν ] = 0 .
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The square of Mµν
⊥ is now indeed Poincaré-invariant because it commutes not only with

Mµν
⊥ but also with Pµ. To establish the relation with W 2, one can derive1

Mµν
⊥ = − 1

P 2
εµναβPαWβ ,

M̃µν
⊥ =

1

2
εµναβ(M⊥)αβ =

1

P 2
(PµW ν − P νWµ) ,

(B.26)

from where it follows that

W 2 = −P
2

2
Mµν
⊥ (M⊥)µν , M̃µν

⊥ (M⊥)µν = 0 . (B.27)

W 2 is therefore the analogue of C1 from the Lorentz group whereas the remaining
possible Casimir vanishes identically. Along the same lines one obtains the relation

[Wµ,W ν ] = −iP 2Mµν
⊥ = iεµναβPαWβ (B.28)

that will become useful later. From the 1/P 2 factors in the denominators of these
expressions we also see that the massless case P 2 = 0 will be special, cf. Sec. B.3.

B.2 Representations of the Lorentz group

Reducible vs. irreducible representations. Let’s work out the irreducible repre-
sentations of the Lorentz group. The discussion is similar to that in App. A for SU(N)
except for some additional complications due to the richer structure of the group. A
Lorentz tensor of rank n is defined by the transformation law

(T ′)µν...τ = Λµα Λνβ . . .Λ
τ
λ︸ ︷︷ ︸

n times

Tαβ...λ , (B.29)

so we can always construct the representation matrices Λµα Λνβ · · · of the Lorentz
transformation as the outer product 4 ⊗ 4 ⊗ · · · of the 4-dimensional defining repre-
sentation Λ. However, these representations are not irreducible. Take for example the
4 × 4 tensor Tµν , which has in principle 16 components. Its trace, its antisymmetric
component, and its symmetric and traceless part,

S = Tαα, Aµν = 1
2 (Tµν − T νµ), Sµν = 1

2 (Tµν + T νµ)− 1
4 g

µν S, (B.30)

do not mix under Lorentz transformations: an (anti-) symmetric tensor is still (anti-)
symmetric after the transformation, and the trace S is Lorentz-invariant. The trace
is one-dimensional, the antisymmetric part defines a 6-dimensional subspace, and the
symmetric and traceless part a 9-dimensional subspace, so we have the decomposition
4⊗ 4 = 1⊕ 6⊕ 9.

1Use the properties that εµρσλM
ρσPλ = εµρσλM

ρσ
⊥ Pλ in the definition of Wµ, that Pλ commutes

with Mρσ
⊥ and Wµ, and insert the identity εµαβλ ε

µ
ρστ P

λP τ = −P 2 (TαρTβσ − TασTβρ). Note that
the ε−tensor switches sign when lowering or raising spatial indices; εµναβ = 1 and εµναβ = −1 for an
even permutation of the indices (0123).
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Figure B.2: Multiplets of the Lorentz group: tensor (shaded) vs. spinor representations.

Is there a simple way to classify the irreducible representations of the Lorentz group?
If we define

A = 1
2 (J − iK), B = 1

2 (J + iK) (B.31)

and calculate their commutator relations using Eq. (B.18), we obtain two copies of an
SU(2) algebra with hermitian generators Ai and Bi:

[Ai, Aj ] = iεijk Ak , [Bi, Bj ] = iεijk Bk , [Ai, Bj ] = 0 . (B.32)

The two Casimir operatorsA2 andB2 are linear combinations of Eq. (B.20) with eigen-
values a (a+ 1) and b (b+ 1), hence there are two quantum numbers a, b = 0, 1

2 , 1, . . .
to label the multiplets. We will denote the irreducible representation matrices by

D(Λ) = e
i
2
ωµνMµν

= eiφ·J+is·K , M ij = −εijk Jk , M0i = Ki , (B.33)

where in an n-dimensional representation D(Λ), Mµν , J and K are n × n matrices.
The generators Mµν are not hermitian because they contain the boost generators, and
therefore the representation matrices are not unitary. Their dimension is

Dab = (2a+ 1)(2b+ 1), (B.34)

which leads to

D00 = 1 ,
D

1
2

0 = 2

D0 1
2 = 2

,
D10 = 3

D01 = 3
, D

1
2

1
2 = 4 , . . . D11 = 9 , . . . (B.35)

The generator of rotations is J = A+B, so we can use the SU(2) angular momentum
addition rules to construct the states within each multiplet: the states come with all
possible spins j = |a− b| . . . a+ b, where j3 goes from −j to j, see Fig. B.2.
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Tensor representations. Let’s first discuss the ‘tensor representations’ where a + b
is integer (the shaded multiplets in Fig. B.2). These are the actual irreducible repre-
sentations of the Lorentz group that can be constructed via Eq. (B.29):

• Trivial representation D00 = 1: here the generator is Mµν = 0 and the
representation matrix is 1. This is how Lorentz scalars transform.

• Antisymmetric representation: the 6-dimensional antisymmetric part Aµν of
a 4×4 tensor belongs here. It is the adjoint representation because its dimension
is the same as the number of generators. If Aµν is real, it is also irreducible; if it is
complex it can be further decomposed into a self-dual (D10) and an anti-self-dual
representation (D01), depending on the sign of the condition Aµν = ± i

2 ε
µνρσAρσ.

In Euclidean space Aµν is always reducible and therefore the antisymmetric rep-
resentation has the form D10 ⊕D01.

• Vector representation D
1
2

1
2 = 4: The four-dimensional vector representation

plays a special role because the transformation matrix is Λ itself, and it can
be used to construct all further (reducible) tensor representations according to
Eq. (B.29). The transformation matrices act on four-vectors, for example the
space-time coordinate xµ or the four-momentum pµ, and they are irreducible
because Λ mixes all components of the four-vector. The generator Mµν has the
form of Eq. (B.16).

• Tensor representation D11 = 9: This is where the 9-dimensional symmetric
and traceless part Sµν of a 4× 4 tensor belongs.

The Lorentz group has two invariant tensors gµν and εµναβ which transform as

g′
µν

= Λµα Λνβ g
αβ = gµν ,

ε′
µνρσ

= Λµα Λνβ Λργ Λσδ ε
αβγδ = (det Λ) εµνρσ .

(B.36)

gµν is a scalar and εµναβ is a pseudoscalar since it is odd under parity (det Λ = −1).
Their (anti-) symmetry can be exploited to construct the irreducible components of
higher-rank tensors. For example, higher antisymmetric tensors in four dimensions
become simple because we cannot antisymmetrize over more than four indices. Aµνρ

has 4 components; they can be rearranged into a four-vector εαµνρA
µνρ that transforms

under the vector representation. Aµνρσ has only one independent component A0123 that
can be combined into the pseudoscalar εµνρσ A

µνρσ, and Aµνρστ = 0.

Spinor representations. The analysis also produces spinor representations where
a + b is half-integer. These are not representations of the Lorentz group itself but
rather projective representations, where instead of D(Λ′)D(Λ) = D(Λ′Λ) one has

D(Λ′)D(Λ) = eiϕ(Λ′,Λ)D(Λ′Λ) , (B.37)

with a phase that depends on Λ and Λ′. In our case, eiϕ = ±1 and so the projective
representations are double-valued: one can find two representation matrices ±D(Λ)
that belong to the same Λ. However, both of them are physically equivalent and
therefore the representations in Fig. B.2 are all relevant.
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The origin of this behavior is that the Lorentz group, and in particular its subgroup
SO(3), is not simply connected. The projective representations of a group correspond
to the representations of its universal covering group: it has the same Lie algebra, which
reflects the property of the group close to the identity, but it is simply connected. In the
same way as SU(2) is the double cover of SO(3), the double cover of SO(3, 1)↑ is the
group SL(2,C). It is the set of complex 2× 2 matrices with unit determinant and, like
the Lorentz group, it also depends on six real parameters. A double-valued projective
representation of SO(3, 1)↑ corresponds to a single-valued representation of SL(2,C).
Similarly, the double cover of the Euclidean Lorentz group SO(4) is SU(2) × SU(2);
these are the representations that we actually derived in Fig. B.2. Hence we arrive at
another type of chiral symmetry, labeled by the Casimir eigenvalues a (left-handed)
and b (right-handed): representations with a = 0 or b = 0 have definite chirality,
whereas those with a = b are called non-chiral. Here are some of the lowest-dimensional
irreducible spinor representations:

• Fundamental representation: D
1
2

0 and D0 1
2 have both dimension two and

carry spin j = 1/2. They are the (anti-) fundamental representations because all
other representations can be built from them. The generators are A = σ

2 and
B = 0 for the left-handed representation and vice versa for the right-handed one,
where σi are the Pauli matrices, and hence the spin and boost generators become

D
1
2

0 : J =
σ

2
, K = i

σ

2
, D0 1

2 : J =
σ

2
, K = −iσ

2
. (B.38)

The representation matrices are complex 2 × 2 matrices ∈ SL(2,C), and the
corresponding spinors are left- and right-handed Weyl spinors ψL, ψR.

• Dirac (bispinor) representation D
1
2

0 ⊕D0 1
2 : Under a parity transformation,

the rotation generators are invariant whereas the boost generators change their
sign: J → J , K → −K. Therefore, parity exchanges A↔ B and transforms the
two fundamental representations into each other, and a theory that is invariant
under parity must necessarily include both doublets. This is the reason why
spin-1/2 fermions are treated as four-dimensional Dirac spinors ψα, which can be
constructed as the direct sums of left- and right-handed Weyl spinors:

J =

(
σ/2 0

0 σ/2

)
=

Σ

2
, K =

(
iσ/2 0

0 −iσ/2

)
, ψ =

(
ψL
ψR

)
. (B.39)

The resulting generator Mµν = − i
4 [γµ, γν ] satisfies again the Lorentz algebra

relation. The Dirac spinors transform under the four-dimensional representation
matrices: ψ′ = D(Λ)ψ, ψ′ = ψD(Λ)−1. Therefore, a bilinear ψψ is Lorentz-
invariant, ψγµψ transforms like a vector because D(Λ)−1 γµD(Λ) = Λµνγν , etc.

• Rarita-Schwinger representation: The same point would in principle apply
to spin-3

2 fermions in the (eight-dimensional) D
3
2

0⊕D0 3
2 representation, but it is

more convenient to construct them as Rarita-Schwinger vector-spinors ψµα via

D
1
2

1
2 ⊗ (D

1
2

0 ⊕D0 1
2 ) = (D

1
2

0 ⊕D 1
2

1)⊕ (D0 1
2 ⊕D1 1

2 ) , (B.40)

which in turn requires additional constraints to single out the spin-3
2 subspace.
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Figure B.3: Visualization of ϕ′(x) = ϕ(Λ−1x). Compare this with quantum mechanics: if
x→ Rx and ϕ→ Uϕ, then 〈x|Uϕ〉 = 〈R−1x|ϕ〉, or equivalently: ϕ(x)→ Uϕ(x) = ϕ(R−1x).

This last example may seem a bit contrived, but remember that from the perspective
of the Poincaré group only the Casimirs P 2 and W 2 are relevant. For a massive particle
the eigenvalues of W 2 in the rest frame coincide with j, but since W 2 is Poincaré-
invariant, all properties associated with j hold in general. Therefore, the multiplet
assignment Dab in Fig. B.2 is strictly speaking meaningless because the only quantity
that really matters is the spin content j: a particle with spin j = 1

2 has two spin
polarizations, a spin-1 particle three, and so on.

In the nonrelativistic limit where Lorentz transformations reduce to spatial rota-
tions, the multiplets in Fig. B.2 are no longer irreducible but we can decompose them
with respect to SO(3) (or its universal cover SU(2)). For example, a four-vector
V µ = (V 0,V ) defines an irreducible representation of the Lorentz group, but from the
point of view of the SO(3) subgroup it is reducible (4 = 1⊕3) because V 0 is invariant
under spatial rotations (it has j = 0), whereas the three spatial components form an
irreducible representation with j = 1. Similarly, the symmetric and traceless part of a
4× 4 tensor is reducible: 9 = 1⊕ 3⊕ 5.

B.3 Poincaré invariance in field theories

Field representations. So far we have only considered the Lorentz transformations
of spacetime-independent quantities (scalars, vectors, spinors etc.). They transform
generically as ϕ′i = Dij(Λ)ϕj , where i and j are the matrix indices in the given repre-
sentation. When we consider fields ϕi(x), the transformation x′ = Λx must also act on
the spacetime argument:

ϕ′i(x) = Dij(Λ)ϕj(Λ
−1x) ⇔ ϕ′i(x

′) = Dij(Λ)ϕj(x) . (B.41)

The appearance of Λ−1 is consistent with the usual symmetry operations in quantum
mechanics, cf. Fig. B.3. We can now define two types of infinitesimal transformations.
The first is the same as before and expresses the ‘change in perspective’:

δϕi = ϕ′i(x
′)− ϕi(x) =

i

2
εµν (Mµν

S )ij ϕj(x) , (B.42)

with the finite-dimensional matrix representation of the generator Mµν (we added the
subscript S for spin to distinguish it from what comes next). For example, a scalar
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field ϕ′(x′) = ϕ(x) is Lorentz-invariant and has δϕ = 0. On the other hand, when we
want to measure how the functional form of the field changes at the position x (see
again Fig. B.3), we have to work out

δ0ϕi = ϕ′i(x)− ϕi(x) = ϕ′i(x
′ − δx)− ϕi(x) = δϕi − δxµ ∂µϕi . (B.43)

The infinitesimal Lorentz transformation has the form δxµ = εµν x
ν , and therefore

− δxµ ∂µϕi = −εµν xν∂µϕi =
i

2
εµν [−i (xµ∂ν − xν∂µ)]︸ ︷︷ ︸

=:Mµν
L

ϕi , (B.44)

where Mµν
L contains the orbital angular momentum and satisfies again the Lorentz

algebra relations. Before discussing it further, let’s generalize this to Poincaré trans-
formations right away. For pure translations each component of the field is a scalar:

ϕ′i(x) = ϕi(x− a) ⇔ ϕ′i(x
′) = ϕi(x) , (B.45)

and hence δϕi = 0 and δ0ϕi = −aµ∂µϕi = iaµP
µϕi, with Pµ = i∂µ. The total change

of the field is therefore

ϕ′i(x) = ϕi(x) +

[
i

2
εµν (Mµν

S +Mµν
L ) + iaµP

µ

]

ij

ϕj(x) . (B.46)

Mµν
L and Pµ are differential operators that satisfy the Poincaré algebra relations when

applied to ϕi(x). They are diagonal in i, j whereas the spin matrix Mµν
S depends on

the representation of the field. In the same way as Mµν = Mµν
S + Mµν

L , the angular
momentum and boost generators extracted from Eq. (B.17) are the sums of spin and
orbital angular momentum parts: J = S +L and K = KS +KL, with

L = x× P , KL = xP 0 − x0P , Pµ = i∂µ . (B.47)

Note that the boost generator is explicitly time-dependent.

Poincaré invariance of the action. The invariance of the classical action under
Poincaré transformations has similar consequences as for global symmetry groups,
cf. Sec. 2.1: there are conserved Noether currents, and after quantization the corre-
sponding charges form a representation of the Poincaré algebra on the state space.

To derive the current we have to add variations of spacetime to Eq. (2.1):

δS =

∫
d4x δ0L

︸ ︷︷ ︸
Eq. (2.1)

+

∫
d4x ∂µL δxµ +

∫
(δd4x)L =

∫
d4x

[
δ0L+ ∂µ(L δxµ)

]
. (B.48)

The first term is the same as in Eq. (2.1) except for the replacement δ → δ0, because
it contains only the variation in the functional form of the fields. To arrive at the last
expression we used δd4x = d4x ∂µδx

µ. The new derivative term will contribute to the
current, which becomes

− δjµ = L δxµ +
∑

i

∂L
∂(∂µϕi)

δ0ϕi . (B.49)
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Inserting δ0ϕi = δϕi− δxα ∂αϕi from Eq. (B.43), we can reexpress this in terms of δϕi:

δjµ =

[∑

i

∂L
∂(∂µϕi)

∂αϕi − gµα L
]

︸ ︷︷ ︸
=:Tµα

δxα −
∑

i

∂L
∂(∂µϕi)

δϕi . (B.50)

Tµα defines the energy-momentum tensor whose T 00 component is the Hamiltonian
density: T 00 = πi ϕ̇i−L = H. We can now derive two types of conserved currents that
reflect the invariance under translations or Lorentz transformations:

• For pure translations x → x + a we have δxα = aα and the fields are invariant,
δϕi = 0. Hence, the second term in (B.50) drops out and the translation current
is just the energy-momentum tensor itself: δjµ = aα T

µα. Translation invariance
of the action entails that its divergence vanishes: ∂µ T

µα = 0.

• For pure Lorentz transformations the group parameters are εαβ and therefore

δxα = εαβ x
β , δϕi =

i

2
εαβ (Mαβ

S )ij ϕj . (B.51)

Inserting this into Eq. (B.50), writing δjµ = 1
2 εαβm

µ,αβ, and using the antisym-
metry of εαβ we find the conserved current

mµ,αβ = Tµαxβ − Tµβxα + sµ,αβ , sµ,αβ = −i ∂L
∂(∂µϕi)

(Mαβ
S )ij ϕj , (B.52)

with ∂µm
µ,αβ = 0. The first two terms encode the orbital angular momentum

and the third term is the spin current.2

If we substitute the explicit form of the energy-momentum tensor into Eq. (B.52)
together with Pα = i∂α and Mµν = Mµν

S +Mµν
L , we can write the two currents as

Tµα = −i ∂L
∂(∂µϕi)

Pα ϕj − gµα L ,

mµ,αβ = −i ∂L
∂(∂µϕi)

Mαβ
ij ϕj + (xαgµβ − xβgµα)L .

(B.53)

The corresponding constants of motion, whose total time derivatives vanish, are the
zero components of the currents Tµα and mµ,αβ when integrated over d3x:

P̂α =

∫
d3xT 0α , M̂αβ =

∫
d3xm0,αβ . (B.54)

In the quantum field theory they will form another representation of the Poincaré
algebra that acts on the state space.

2An alternative form of the energy-momentum tensor is the Belinfante tensor, which is still conserved
(and hence physically equivalent) but symmetric in α and β: Θαβ = Tαβ− 1

2
∂µ (sµ,αβ +sα,βµ−sβ,µα).

To prove this, use the antisymmetry of sµ,αβ in α, β and the conservation law ∂µm
µ,αβ = 0.
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Dirac theory. As an example, consider a free Dirac Lagrangian L = ψ (/P − m)ψ.
The Poincaré transformation of the field is ψ′(x′) = D(Λ)ψ(x), where D(Λ) has the
form of Eq. (B.33) with Mµν

S = −1
2 σ

µν = − i
4 [γµ, γν ]. From Eq. (B.53) we have

∂L
∂(∂µψ) = ψ iγµ

∂L
∂(∂µψ)

= 0
⇒ T 00 = ψ†P 0 ψ − L ,

T 0i = ψ†P i ψ ,

m0,ij = ψ†M ij ψ ,

m0,0i = ψ†M0i ψ − xiL ,
(B.55)

and we can read off the constants of motion (Σi = 1
2 εijk σ

jk):

P̂ 0 =

∫
d3xψ (γ ·P +m)ψ , P̂ =

∫
d3xψ†P ψ , Ĵ =

∫
d3xψ†

[
x× P +

Σ

2

]
ψ .

In relativistic quantum mechanics the field ψ(x) is interpreted as a particle’s wave
function that belongs to a Hilbert space, and a Lorentz-invariant scalar product for
solutions of the Dirac equation (/P −m)ψ = 0 is imposed:

〈ψ|ψ〉 :=

∫
dσµ ψ(x) γµ ψ(x) =

∫
d3xψ†(x)ψ(x) . (B.56)

It has the same value on each spacelike hypersurface σ in Minkowski space, and choosing
it to be a slice at fixed time yields the second form. For solutions of the classical
equations of motion the terms proportional to the Dirac Lagrangian L in (B.55) can
be dropped and the conserved charges become the expectation values of the operators
Pα and Mαβ:

P̂α =

∫
d3xT 0α = 〈ψ|Pαψ〉 , M̂αβ =

∫
d3xm0,αβ = 〈ψ|Mαβψ〉 . (B.57)

One can show that both operators Pα and Mαβ are hermitian: 〈ψ1|Oψ2〉 = 〈Oψ1|ψ2〉,
and therefore the representation provided by Eq. (B.46) is unitary. This has become
possible because, when applied to spacetime-dependent fields ψ(x) that depend on a
continuous and unbound variable x, the representations are now infinite-dimensional
(they are differential operators). Specifically, the spin contribution to the boost genera-
tor Ki

S = −1
2 σ

0i = − i
2γ

0γi is still an antihermitian matrix, but its sum K = KS +KL

with the differential operator KL = xP 0 − x0P is indeed hermitian. An analogous
Lorentz-invariant scalar product for scalar fields φ(x) is

〈φ|φ〉 =
i

2

∫
dσµφ∗(x)

↔
∂ µ φ(x) =

i

2

∫
d3xφ∗(x)

↔
∂ 0 φ(x) ,

↔
∂ µ =

→
∂ µ −

←
∂ µ . (B.58)

Unitary representations of the Poincaré group. Now what about the quantum
field theory? A theorem by Wigner states that continuous symmetries must be imple-
mented by unitary operators on the state space. The Lorentz group is not compact be-
cause it contains boosts, hence all unitary representations must be infinite-dimensional.
This is realized in the quantum field theory: the fields ϕi(x) become operators on the
Fock space, and the constants of motion in Eq. (B.54) are hermitian operators that
define a unitary representation of the Poincaré algebra on the state space:

U(Λ, a) = e
i
2
εµν M̂µν

eiaµP̂
µ

= 1 + i
2 εµν M̂

µν + iaµP̂
µ + . . . (B.59)
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What is the irreducible state space? One of the axioms of quantum field theory is
that the vacuum is the only Poincaré-invariant state: U(Λ, a) |0〉 = |0〉.3 The Poincaré
group has two Casimir operators P 2 and W 2 (we dropped the hats again). With
[Pµ,W ν ] = 0 and Eq. (B.28) there are at most six operators that commute with each
other and can be used to label the eigenstates: Pµ, W 2, and one component of the
Pauli-Lubanski vector Wµ. Considering one-particle states, this allows us to work with
eigenstates of the momentum operator:

Pµ|p, . . . 〉 = pµ|p, . . . 〉 ⇒ U(1, a) |p, . . . 〉 = eia·p |p, . . . 〉 , (B.60)

where the dots are the remaining quantum numbers.
To construct the general form of the representation, let’s start with a massive particle

at rest. We denote the rest-frame momentum by p̊ = (m,0). The group that leaves
a given choice of momentum pµ invariant is called the little group; its generators are
the independent components of the Pauli-Lubanski vector. Since rotations leave the
rest-frame momentum p̊µ invariant, the independent components are the generators J i,
cf. Eq. (B.22), and the little group is SO(3) — or actually SU(2) because we want to
include spinor representations as well. Hence these operators take the form P 2 = m2,
W 2 = −m2J2 and W 3 = mJ3, where J3 has eigenvalue σ and the eigenvectors are

Pµ |p̊, jσ〉 = p̊µ |p̊, jσ〉 , J2 |p̊, jσ〉 = j(j + 1) |p̊, jσ〉 , J3 |p̊, jσ〉 = σ |p̊, jσ〉 . (B.61)

This is the standard angular momentum algebra, and therefore rotations R are repre-
sented by the unitary matrices Dj(R) with σ ∈ [−j, j]:

U(R, 0) |p̊, jσ〉 =
∑

σ′

Djσ′σ(R) |p̊, jσ〉 . (B.62)

On the other hand, a boost from p̊ to p, which we denote by L(p), will have the effect

U(L(p), 0) |p̊, jσ〉 = |p, jσ〉 . (B.63)

With that we have everything in place to apply a general Lorentz transformation
U(Λ, 0) to a state vector |p, jσ〉:

U(Λ, 0) |p, jσ〉 = U(Λ, 0)U(L(p), 0) |p̊, jσ〉
= U(L(Λp) L−1(Λp) Λ L(p)︸ ︷︷ ︸

=:RW

, 0) |p̊, jσ〉. (B.64)

The Wigner rotation RW (Λ, p) is a pure rotation that leaves the rest-frame vector
invariant, because L(p) p̊ = p entails RW p̊ = L−1(Λp) Λp = p̊. Think of it as a journey
along the mass shell that leads back to the starting point: p̊ → p → Λp → p̊. This
is extremely helpful because from Eq. (B.62) we know how rotations act on the state
space, and in combination with Eqs. (B.63) and (B.60) we arrive at the final result:

U(Λ, a) | p, jσ〉 = eia·(Λp)
∑

σ′

D(j)
σ′σ(RW )

∣∣Λp, jσ′
〉
. (B.65)

3Actually, translation invariance and uniqueness of the vacuum is sufficient to prove this.
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That the representation is unitary can be seen from the scalar product:

〈p, jσ |U †(Λ, a)U(Λ, a) | p′, j′σ′〉 = 〈Λp, jσ |Λp′, j′σ′〉 = 〈p, jσ | p′, jσ〉 . (B.66)

In the first equality the representation matrices Dj and the phases eia·(Λp) cancel each
other, and the second equality holds because 〈λ|λ′〉 = (2π)3 2Ep δ(p−p′) δλλ′ is Lorentz-
invariant. Hence, we have a unitary implementation of the Poincaré group in the
quantum field theory, as required by Wigner’s theorem.

Massless particles. Massless particles with P 2 = 0 do not have a rest frame, but
the construction of the irreducible representations is very similar. Here we can choose
p̊ = ω (1,n) to be some momentum on the light cone, and the little group SO(2)
(or equivalently U(1)) consists of the rotations around the momentum axis n. The
generator is the helicity J · n, whose eigenvalue λ can be shown to be quantized:
λ = 0,±1

2 ,±1, etc. Hence, massless particles have no spin but only two components of
the helicity that are measurable.4 The steps are the same as before, with the Wigner
rotation RW defined as in Eq. (B.64) except that D(RW ) = eiλ θ(Λ,p) is just a phase:

U(Λ, a) | p, λ〉 = eia·(Λp)D(RW ) |Λp, λ〉 . (B.67)

In principle this also implies that the helicity is Poincaré-invariant and ±λ corresponds
to different species of particles. However, the same reasoning that required us earlier
to implement spinors with both chiralities also applies here: J ·n is a pseudoscalar and
changes sign under parity, and a theory that conserves parity must treat both helicity
states symmetrically. A combined representation of the Poincaré group and parity
identifies ±λ with the two polarizations of the same particle (e.g. the photon in QED).

Transformation of field operators and n−point functions. Field operators trans-
form in the same way as in Eq. (B.41) if we insert ϕ′i = U(Λ, a)−1ϕi U(Λ, a). Shuffling
things around between the left and right, it is more convenient to write

U(Λ, a)ϕi(x)U(Λ, a)−1 = D(Λ)−1
ij ϕj(Λx+ a) . (B.68)

As before, the field operator ϕi(x) belongs to some finite-dimensional multiplet of the
Lorentz group andD(Λ) is the corresponding spin matrix of the Lorentz transformation.
For example, we have D(Λ) = 1 for a scalar field, D(Λ) = Λ for a vector field or
D(Λ) = exp(− i

4 εµν σ
µν) for a Dirac spinor field.

Matrix elements are Lorentz-covariant and transform under these matrix represen-
tations. Take for example a scalar Bethe-Salpeter wave function of two scalar fields,
χ(x1, x2, p) = 〈0|Tϕ(x1)ϕ(x2) |p〉. In that case Eqs. (B.65) and (B.68) simplify to

UX = U(0, X) : UX |p〉 = eip·X |p〉 , UX ϕ(x)U−1
X = ϕ(x+X) , (B.69)

UΛ = U(Λ, 0) : UΛ |p〉 = |Λp〉 , UΛ ϕ(x)U−1
Λ = ϕ(Λx) . (B.70)

4In fact, the Pauli-Lubanski operator Wµ has three independent components in the massless case:
the helicity J ·n and two components perpendicular to n. One can show, however, that the transverse
components lead to representations with continuous spin W 2 > 0, which are not observed in nature
and must be excluded. Evaluated on the helicity states, the spin is zero: W 2 = 0.
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Translation invariance has the consequence that only the relative coordinate x := x1−x2

is relevant because the dependence on the total position X := x1+x2
2 can only enter

through a phase:

χ(x1, x2, p) = 〈0|Tϕ(x1)ϕ(x2) |p〉 = 〈0|Tϕ(X + x
2 )ϕ(X − x

2 ) |p〉
= 〈0|TUX ϕ(x2 )U−1

X UX ϕ(−x
2 )U−1

X |p〉
= 〈0|Tϕ(x2 )ϕ(−x

2 ) |p〉 e−ip·X = χ(x, p) e−ip·X ,

(B.71)

where we used translation invariance of the vacuum. In turn, the wave function χ(x, p)
is Lorentz-invariant:

χ(x, p) = 〈0|Tϕ(x2 )ϕ(−x
2 ) |p〉

= 〈0|TU−1
Λ UΛ ϕ(x2 )U−1

Λ UΛ ϕ(−x
2 )U−1

Λ UΛ |p〉
= 〈0|Tϕ(Λx

2 )ϕ(−Λx
2 ) |Λp〉 = χ(Λx,Λp).

(B.72)

The time ordering commutes with the transformation because the sign of (x1 − x2)0

is invariant under ISO(3, 1)↑. If we set p = 0 in the first equation we also see that
translation invariance for the two-point function 〈0|Tϕ(x1)ϕ(x2) |0〉 (and generally for
any n−point function) means that the total coordinate drops out completely.

We can repeat the steps in Eq. (B.72) for matrix elements that contain fields in
some general Lorentz representation. For example, for a qq̄ vector Green function
Gµ(x, x1, x2) = 〈0|T jµ(x)ψ(x1)ψ(x2) |0〉 we obtain

Gµ(x, x1, x2) = (Λ−1)µν D
−1(Λ)Gν(Λx,Λx1,Λx2)D(Λ) , (B.73)

where D(Λ) is again the transformation matrix for Dirac spinors coming from the quark
fields. The analogous equation in momentum space,

Gµ(p, q) = (Λ−1)µν D
−1(Λ)Gν(Λp,Λq)D(Λ) , (B.74)

can be immediately verified for the various tensor structures that contribute to the
three-point function: γµ, pµ, pµ /p, γµ/p, etc. In covariant equations where these objects
are combined in loop integrals (perturbation series, Dyson-Schwinger equations, etc.),
all internal representation matrices cancel each other and only the overall factors of
the diagrams remain, which can be factored out. It is then not necessary to perform
explicit Lorentz transformations when changing the frame; one can simply evaluate the
equation in a different frame and the result must be the same.
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