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4 Quantization of the Dirac field

The quantization of the Dirac field proceeds almost along the same lines as that for the
classical field, except for one important difference: instead of commutation relations
for the fields we will need anticommutation relations to ensure a positive spectrum.

Quantized Hamiltonian. To see this, let’s calculate the Hamiltonian without im-
posing any commutation relations yet. We start with the general solutions ψ(x), ψ(x)
of the Dirac equation, which we reinterpret as operators on a state space:

ψ(x) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
ap,s up,s e

−ipx + b†p,s vp,s e
ipx
)
p0=Ep

,

ψ(x) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
bp,s vp,s e

−ipx + a†p,s up,s e
ipx
)
p0=Ep

.

(4.1)

The coefficients ap,s = as(p) and bp,s = bs(p) inherit the operator structure, whereas
up,s = us(p) and vp,s = vs(p) are the Dirac spinors that we worked out above. The
conjugate momentum is

Π =
∂L
∂ψ̇

= ψ iγ0 = iψ† , (4.2)

and therefore the Hamiltonian becomes

H =

∫
d3xψ†(x) γ0(−iγ ·∇ +m)ψ(x) . (4.3)

This agrees with our earlier result (3.37) extracted from the energy momentum tensor.
Note also that γ0(−iγ · ∇ + m) is the Dirac Hamiltonian that is well known from
quantum mechanics.

When we insert the Fourier decomposition for the fields, then after some calculation
(which is analogous to Eqs. (2.6–2.11)) we arrive at

H =

∫
d3p

2Ep
Ep
∑
s

(
a†p,s ap,s − bp,s b†p,s

)
. (4.4)

The calculation goes along the same lines as before: take the three-dimensional Fourier transform
(Ex)

ψ(x) =
1

(2π)3/2

∫
d3p ψ̃p(t) e

ip·x , ψ̃p(t) =
1

2Ep

(
ap,s up,s e

−iEpt + b†−p,s v−p,s e
iEpt

)
(4.5)

and plug it into the Hamiltonian, which in momentum space becomes

H =

∫
d3p ψ̃†p(t) γ

0(p · γ +m) ψ̃p(t) . (4.6)

From Eq. (3.54) we know that the solutions of the Dirac equation are eigenfunctions of the Dirac
Hamiltonian, which simplifies the calculations a lot:

γ0(p · γ +m) ψ̃p(t) =
1

2

(
ap,s up,s e

−iEpt − b†−p,s v−p,s e
iEpt

)
. (4.7)

With the orthogonality relations (3.61) and (3.63), the time dependencies cancel and one arrives at the
result above.
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Actually, the result in Eq. (4.4) looks rather suspicious because of the minus sign.
Suppose we postulate canonical commutation relations:

[ψα(x), ψ†β(y)]x0=y0
!

= δαβ δ
3(x− y) . (4.8)

Then the corresponding commutator relations in momentum space would read

[a
p,s
, a†p′,s′ ] = [b†

p,s
, bp′,s′ ] = 2Ep δss′ δ

3(p− p′) , (4.9)

with all other commutators zero, which is easy to verify by inserting the Fourier de-
composition into Eq. (4.8). In that way, once we subtract the vacuum energy, the
Hamiltonian is proportional to a†a− b† b and therefore the energy

〈λ|H|λ〉 =

∫
d3p

2Ep
Ep 〈λ| a†p,s ap,s − b†p,s bp,s |λ〉 (4.10)

is unbounded from below. We could ensure that the energy is positive by demanding
a negative norm, ||bp,s |λ〉||2 < 0, but this violates unitarity. So apparently we face a
dilemma: either we have an unstable vacuum (negative energies) or we violate unitarity
of the theory (negative norms).

The correct way to resolve the problem is to impose anticommutation relations:

{ψα(x), ψ†β(y)}x0=y0 = δαβ δ
3(x− y) , (4.11)

with all other anticommutators zero, which entails

{a
p,s
, a†p′,s′} = {b

p,s
, b†p′,s′} = 2Ep δss′ δ

3(p− p′) , (4.12)

again with all other anticommutators zero. In that case the second term in (4.4) picks
up a minus sign, and after throwing away the infinite constant the normal-ordered
Hamiltonian is again positive:

H =

∫
d3p

2Ep
Ep
∑
s

(
a†p,s ap,s + b†p,s bp,s

)
. (4.13)

In that way the normal ordering for fermions introduces a minus sign for each inter-
change of operators. The same result follows for the four-momentum operator:

Pµ =

∫
d3p

2Ep
pµ
∑
s

(
a†p,s ap,s + b†p,s bp,s

)
. (4.14)

Fock space and Fermi-Dirac statistics. Despite the anticommutation relation for
the fields, the commutation relations (2.24) for the momentum operator still hold as
a consequence of the identity [AB,C] = A{B,C} − {A,C}B. Hence we can take over
the analysis from the scalar field: the vacuum is still defined by ap,s |0〉 = bp,s |0〉 = 0,

multi-particle states are obtained by acting on the vacuum with a†p,s or b†p,s, and their
normalization is the same as before. Note in particular that the norm is positive:4

〈0| ap,s a†p′,s′ |0〉 = 〈0| bp,s b†p′,s′ |0〉 = 2Ep δss′ δ
3(p− p′) . (4.15)

4Remember that δ3(0) is proportional to the volume, so this infrared divergence is not a serious
problem. Had we worked with smeared operators from the beginning (at the expense of a simple
notation), the norm would be well-defined.
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As before, the eigenvalue of the momentum operator Pµ is the total momentum of the
state.

However, there is one important difference: since these operators anticommute be-
tween themselves, an N−particle state is antisymmetric under particle exchange:

a†p,s a
†
q,r |0〉 = −a†q,r a†p,s |0〉 . (4.16)

Therefore, spin-1
2 particles are fermions, i.e., they obey Fermi-Dirac statistics. In par-

ticular, they satisfy the Pauli principle: no two fermionic states of exactly the same
quantum numbers are possible, because we can never create more than one particle in
the same state:

{a†p,s, a†p,s} = 0 ⇒ a†p,s a
†
p,s |0〉 = 0 . (4.17)

This is another manifestation of the spin-statistics theorem: Lorentz invariance,
positive energies, unitarity (=positive norms) and causality together imply that parti-
cles with integer spin obey Bose-Einstein statistics, whereas particles with half-odd in-
teger spin obey Fermi-Dirac statistics. By working out the U(1) charge from Eq. (3.44),

Q =

∫
d3x :ψ† ψ : =

∫
d3p

2Ep

∑
s

(
a†p,s ap,s − b†p,s bp,s

)
, (4.18)

we arrive at the same interpretation as for the complex scalar field: a†p,s and b†p,s
create fermions and antifermions, respectively, and the charge equals the number of
particles minus antiparticles. Note that the minus sign in Q is also a consequence of
the anticommutation relations: Q was non-negative in the classical theory, where it
could be interpreted as a scalar product between fields, cf. Eq. (3.73).

The spin operator that follows from the classical Noether charge (5.21) is given by∫
d3x :ψ†

Σ

2
ψ : . (4.19)

One can show (Peskin-Schroeder, p.61) that applying it to a state a†p,s |0〉 gives eigen-

value s/2 whereas applied to b†p,s |0〉 it gives eigenvalue −s/2, where s = ±1. Therefore,

a†p,s |0〉 describes a fermion (for example an electron) with mass m, energy Ep, spin 1
2

and spin polarization s/2, whereas b†p,s |0〉 describes an antifermion (positron) with
mass m, energy Ep, spin 1

2 and spin polarization −s/2. The state ψ(x) |0〉 describes a
fermion at position x and ψ(x) |0〉 an antifermion at position x.

Causality. Despite the anticommutator relations that we imposed for the Dirac fields,
the microcausality axiom must remain unchanged: all physical observables are bosonic
operators and must commute at spacelike distances,

[O1(x),O2(y)]
!

= 0 if (x− y)2 < 0 . (4.20)

This is ensured by requiring

Sαβ(x− y) := {ψα(x), ψβ(y)} !
= 0 if (x− y)2 < 0 , (4.21)
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which is the generalization of Eq. (2.74) in the scalar case. Eq. (4.20) can be checked
(Ex) directly for fermion bilinearsOi(x) = ψ(x) Γi ψ(x), where Γi is any of the Dirac matrices

in Eq. (3.21), by exploiting the identity

[AB,CD] = A {B,C}D − C {A,D}B − {A,C} [B,D] + [A,C] {B,D}
2

. (4.22)

Inserting the Fourier decomposition (4.1), the anticommutator relation (4.12) and
the completeness relations (3.62), this expression becomes

S(z) =
1

(2π)3

∫
d3p

2Ep

(
(/p+m) e−ipz + (/p−m) eipz

)
= (i/∂ +m)

1

(2π)3

∫
d3p

2Ep

(
e−ipz − eipz

)
= (i/∂ +m) ∆(z)

(4.23)

where ∆(z) is the scalar analogue in Eq. (2.69). From here it is easy to recover our
original commutator relations (4.11):

S(z)
∣∣
z0=0

= (i/∂ +m) ∆(z)
∣∣
z0=0

= γ0 δ3(z) , (4.24)

because ∂0 ∆(z)
∣∣
z0=0

= −iδ3(z), ∂i ∆(z)
∣∣
z0=0

= 0 and ∆(z)
∣∣
z0=0

= 0.

Feynman propagator. Similarly, we define the Feynman propagator for fermions as

SF (x− y) := 〈0|Tψ(x)ψ(y) |0〉 =

{
〈0|ψ(x)ψ(y) |0〉 if x0 ≥ y0 ,

−〈0|ψ(y)ψ(x) |0〉 if y0 ≥ x0 ,
(4.25)

with the crucial difference of the minus sign. It is necessary because if (x− y)2 < 0 we
have S(x − y) = 0 and therefore ψ(x)ψ(y) = −ψ(y)ψ(x). For spacelike distances the
question of whether x0 > y0 or x0 < y0 depends on the frame, and to arrive at a frame-
independent definition of the time-ordering symbol T the expression for Tψ(x)ψ(y)
for x0 > y0 and x0 < y0 must agree.

Using the definition above and inserting the Fourier decomposition, one evaluates
SF (z) = (i/∂ +m) ∆F (z) and therefore the fermion propagator becomes

SF (z) =

∫
d4p

(2π)4
e−ipz

i (/p+m)

p2 −m2 + iε
. (4.26)

Since (/p+m) (/p−m) = p2 −m2, the inverse propagator in momentum space has the
form

S−1
F (p) = −i (/p−m) . (4.27)

The Feynman propagator is a Green function of the Dirac equation, i.e., it is one of
the four possible solutions to the equation (i/∂−m)G(z) = iδ4(z). Their interpretation
and closure procedure in the complex plane are as in the scalar theory.
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Parity. Earlier we have seen that the parity operation x→ x′ = (t,−x) exchanges the
left- and right-handed Weyl spinors:(

ψ′L(x′)

ψ′R(x′)

)
=

(
ψR(x)

ψL(x)

)
⇒ ψ′(x′) = γ0 ψ(x)

ψ′(x′) = ψ(x) γ0 .
(4.28)

Consequently, the bilinears ψψ and ψ iγ5 ψ transform as scalars and pseudoscalars under parity (γ0

anticommutes with γ5):

ψ′(x′)ψ′(x′) = ψ(x)ψ(x) , ψ′(x′) iγ5 ψ
′(x′) = −ψ(x) iγ5 ψ(x) . (4.29)

The factor i is necessary to make the pseudoscalar bilinear real: (ψ iγ5ψ)† = ψ iγ5ψ. Likewise, ψγµψ
and ψγµγ5ψ transform as vectors and axialvectors, respectively:

ψ′(x′)γµψ′(x′) = ±ψ(x)γµψ(x) ψ′(x′)γµγ5ψ
′(x′) = ∓ψ(x)γµγ5ψ(x) , (4.30)

where the upper sign corresponds to µ = 0 and the lower one to µ = 1, 2, 3.

How does parity act on the Fock space? If we introduce the unitary operator UP that
transforms a state as |λ′〉 = UP |λ〉, then the quantum version of Eq. (4.28) follows
from the same reasoning as in Eq. (2.59):

UP ψ(x)U−1
P = γ0 ψ(x′) , UP ψ(x)U−1

P = ψ(x′) γ0 . (4.31)

We ignore possible phase factors for simplicity because they are not important for the
discussion. Applied to the Fourier decomposition (4.1), we can work out the action of
UP on the creation and annihilation operators:

UP ap,s U
−1
P = a−p,s , UP b

†
p,s U

−1
P = −b†−p,s . (4.32)

To derive this, start with
(Ex)

γ0ψ(x′) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
ap,s (γ0up,s) e

−iEpt−p·x + b†p,s (γ0vp,s) e
iEpt+p·x

)
.

From Eq. (3.59) it follows that γ0up,s = u−p,s and γ0vp,s = −v−p,s; remember our shorthand notation
up,s = us(p), so the minus sign switches only the spatial components. Exchanging p → −p in the
integral leads to

γ0ψ(x′) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
a−p,s up,s e

−ipx − b†−p,s vp,s e
ipx
)
p0=Ep

, (4.33)

and comparison with the direct expression for UP ψ(x)U−1
P gives the result in Eq. (4.32).

Applied to one-particle and -antiparticle states, this entails

UP |p, s, a〉 = UP a
†
p,s|0〉 = a†−p,s|0〉 = | − p, s, a〉 ,

UP |p, s, b〉 = UP b
†
p,s|0〉 = −b†−p,s|0〉 = −| − p, s, b〉 ,

(4.34)

where we assumed parity invariance of the vacuum UP |0〉 = |0〉. The relative minus
sign tells us that fermions and antifermions carry opposite intrinsic parity. For scalar
fields we would not get the relative minus sign: the intrinsic parity of a spin-0 particle
and its antiparticle are equal.
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Charge conjugation. As we remarked in the context of Majorana spinors, one cannot
construct a charge-conjugate Dirac spinor in the form ψ → ψ∗ because this is not
Lorentz-invariant: since D∗(Λ) 6= D(Λ), a Lorentz transformation will mix ψ and ψ∗.
Instead, the property γµ∗ = γ2γµγ2 implies D∗(Λ) = −γ2D(Λ) γ2, which allows us to
define the operation of charge conjugation as

ψc = −iγ2 ψ∗ , ψc = iψ∗γ2 . (4.35)

This is now indeed compatible with a Lorentz transformation:

(ψc)′(x′) = −iγ2
(
ψ′(x′)

)∗
= −iγ2D∗(Λ)ψ∗(x) = D(Λ)ψc(x) . (4.36)

Let’s work this out in the chiral representation:
(Ex)

γ2D(Λ)∗γ2 =

(
0 σ2

−σ2 0

)(
D∗L(Λ) 0

0 D∗R(Λ)

)(
0 σ2

−σ2 0

)
=

(
−σ2D∗R(Λ)σ2 0

0 −σ2D∗L(Λ)σ2

)
.

Using the explicit form of DL,R(Λ) from Eq. (3.9) together with the properties σ2σiσ2 = −σi∗ and
σ2σ2 = 1, it follows that

σ2D∗L,R(Λ)σ2 = D(Λ)R,L ⇒ γ2D∗(Λ)γ2 = −D(Λ) . (4.37)

In terms of Weyl spinors, the charge-conjugate spinor takes the form

ψc =

(
ψcL

ψcR

)
=

(
−iσ2 ψ∗R

iσ2 ψ∗L

)
. (4.38)

Let’s express ψ∗ through the conjugate spinor: ψ∗ = (ψ†)T = (ψγ0)T = γ0 ψT . Defining
the charge-conjugation matrix C = iγ2γ0, we arrive at

ψc = CT ψT , ψc = ψTCT . (4.39)

The transpose on a spinor is not really necessary; it just means that ψcα = (CT )αβ ψβ =
ψβ Cβα. The charge-conjugation matrix has some useful properties:

C† = CT = C−1 = −C, C γT5 C
T = γ5, C γTµ C

T = −γµ . (4.40)

Since charge conjugation does not change the spacetime argument, we can identify it
directly with the operator transformation:

UC ψ U
−1
C = CT ψT , UC ψ U

−1
C = ψTCT . (4.41)

If we insert the Fourier decomposition and use the relations γ2up,s = vp,s and γ2vp,s =
up,s, which follow again from Eq. (3.59), we arrive at

UC ap,s U
−1
C = bp,s , UC bp,s U

−1
C = ap,s . (4.42)

As desired, charge conjugation transforms a particle |p, s, a〉 into its antiparticle |p, s, b〉.
Recall that the state |p, s, a〉 describes a particle with spin polarization s/2 and the
state |p, s, b〉 an antiparticle with spin polarization −s/2; therefore, charge conjugation
also reverses the helicity.
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Time reversal. Although the time reversal operation x→ x′ = (−t,x) looks similar to
the parity transformation, it is probably the most confusing of the discrete symmetries
and has a rather special status. In the classical theory, all particles of the time-mirrored
system follow their trajectories backwards: the momenta and angular momenta are
reversed, and the roles of the initial and final configurations are interchanged. A Dirac
spinor transforms as

ψ′(x′) = γ0γ5 ψc(x) = γ1γ3 ψ∗(x) , (4.43)

which can be derived from the transformation behavior of the Dirac equation, or that
of fermion bilinears. The need for complex conjugation can be understood intuitively
from the picture of antiparticles as particles moving backwards in time (a time re-
versal of the phase e−iEpt would lead to negative energies of the mirrored system
and necessitates a sign change of i). Correspondingly, the Weyl spinors transform
as ψ′L,R(x′) = iσ2 ψ∗L,R(x).

The speciality of time reversal is that, when taking matrix elements, it exchanges
the in and out states:

〈UTλ1|ψα(x′) |UTλ2〉 = (γ1γ3)αβ 〈λ1|ψβ(x) |λ2〉∗ = (γ1γ3)αβ 〈λ2|ψ†β(x) |λ1〉 , (4.44)

and therefore we cannot simply compare both sides of the equation anymore to obtain
a transformation law for the field operators. To do so, we must identify UT with an
antiunitary operator, which leads to

UT ψ(x)U−1
T = γ1γ3 ψ(x′) , UT ψ(x)U−1

T = ψ(x′) γ3γ1 , (4.45)

again ignoring possible phases. This is compatible with the Wigner theorem, which
states that symmetries in the quantum theory must be implemented by unitary or
antiunitary operators. Note that an antiunitary operator induces complex conjugation
for numbers: UT cU

−1
T = c∗. However, since the transformation of the quantum fields

ψ, ψ no longer requires complex conjugation, the transformation does not send particles
to antiparticles but rather particles to particles.

The point is that Hilbert state vectors that differ only by phases are physically equivalent, which is
why it is sufficient to demand |〈Uλ1 |Uλ2〉| = |〈λ1|λ2〉| for symmetry operations. This can be realized
by a unitary operator,

〈Uλ1|Uλ2〉 = 〈λ1|λ2〉 , U(c1 |λ1〉+ c2 |λ2〉) = c1 U |λ1〉+ c2 U |λ2〉 (4.46)

or an antiunitary operator:

〈Uλ1|Uλ2〉 = 〈λ1|λ2〉∗ = 〈λ2|λ1〉 , U(c1 |λ1〉+ c2 |λ2〉) = c∗1 U |λ1〉+ c∗2 U |λ2〉 . (4.47)

Clearly, both possibilities are compatible with the symmetry requirement, but the essence of the Wigner
theorem (whose proof is rather lengthy) is that these are the only options. Note that in both cases
U†U = UU† = 1, but the definition of the hermitian conjugate changes in the antiunitary case:
〈λ1|U†λ2〉 = 〈λ2|Uλ1〉. Hence, Eq. (4.44) requires UT to be antiunitary:

〈UTλ1|ψ(x′) |UTλ2〉 = 〈λ2|U†T ψ(x′)† UT |λ1〉 , (4.48)

and the comparison with the r.h.s. leads to Eq. (4.45) (again, up to an irrelevant phase factor).
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C P T CPT

S ψψ 1 1 1 1

P ψ iγ5 ψ 1 −1 −1 1

V ψ γµψ −1 (1,−1) (1,−1) −1

A ψ γµγ5ψ 1 (−1,1) (1,−1) −1

T ψ σµνψ −1

(
1 −1

−1 1

) (
−1 1

1 −1

)
1

∂µ 1 (1,−1) (−1,1) −1

Table II.1: Transformation properties under C, P and T .

CPT. The transformation properties of the various fermion bilinears : ψ(x) Γψ(x) :
under C, P and T are summarized in Table II.1. The free Dirac action is invariant
under C, P and T separately. We can construct more general actions that violate any
of these symmetries, but since they must be Lorentz scalars, the free Lorentz indices
in γµ, γµγ5 and σµν must be contracted with the derivative ∂µ (or other bilinears). As
a consequence, the combined symmetry CPT is always conserved: one cannot build
a Lorentz-invariant quantum field theory with a hermitian Hamiltonian that violates
CPT .

For example, under charge conjugation the bilinears behave as

ψ Γψ → UC (ψ Γψ)U−1
C = ψTCTΓCT ψT = (ψ)α (CTΓCT )αβ ψβ

= −ψβ (CTΓCT )αβ (ψ)α = ψ (C ΓTCT )ψ ,
(4.49)

where we used fermion anticommutation: ψαψα = −ψαψα (the infinite constant vanishes by normal
ordering). Together with the relations (4.40) it is then straightforward to obtain the ‘C’ column in
Table II.1; note that the vector and tensor bilinears switch sign under charge conjugation. Similarly,
under parity one has

ψ(x) Γψ(x) → UP
(
ψ(x) Γψ(x)

)
U−1
P = ψ(x′) (γ0 Γ γ0)ψ(x′) , (4.50)

and time reversal leads to

ψ(x) Γψ(x) → UT
(
ψ(x) Γψ(x)

)
U−1
T = ψ(x′) (γ3γ1 Γ∗ γ1γ3)ψ(x′) , (4.51)

where the complex conjugate Γ∗ is a consequence of the antiunitarity: UT ΓU−1
T = Γ∗. Since we can

express time reversal through charge conjugation via Eq. (4.43), the result can be also written as

UT
(
ψ(x) Γψ(x)

)
U−1
T = ψ(x′) γ5γ

0 (C ΓTCT ) γ0γ5 ψ(x′) . (4.52)

In summary, the signs in the table are simply obtained from the signs of

C → C ΓTCT , P → γ0 Γ γ0 , T → γ5γ
0 (C ΓTCT ) γ0γ5 . (4.53)

Taking everything in combination, the CPT symmetry amounts to γ5 Γγ5 together with a spacetime
reflection x→ −x.


