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6 Interactions and the S-matrix

So far we have been dealing with free, non-interacting quantum field theories for spin-0,
spin-1

2 and spin-1 particles:

Lsc
0 =

1

2
(∂Φ)2 − 1

2
m2

0 Φ2 , LDirac
0 = ψ (i/∂ −m0)ψ , Lem

0 = −1

4
F 2 . (6.1)

We denote the free Lagrangian by L0 and the mass parameter in the Lagrangian by
m0. We can solve the corresponding equations of motion (the Klein-Gordon, Dirac and
Maxwell equations) exactly in terms of superpositions of plane waves. After quantizing
such a theory, the Hilbert space is the Fock space of the multiparticle states that are
created from the free vacuum |0〉.

Interactions. What happens when we include interactions? Let’s write the interacting
Lagrangian as L = L0 + Lint and the interacting Hamiltonian as H = H0 + Hint.
Examples for interactions are:

• Higher-order terms in theories with one type of field, for example the Φ3 and Φ4

interactions in a scalar theory: Lint = − g
3! Φ3 or Lint = − λ

4! Φ4. They describe
self-interactions of a scalar particle with respective coupling strengths g and λ.

• Interactions that couple different types of fields, for example the Lagrangian of
QED: LQED = LDirac

0 + Lem
0 + g ψ /Aψ.

Later we will see that the possible forms of interactions are tightly constrained by the
requirements of gauge invariance and renormalizability.

To keep the discussion generic, let’s stick with scalar fields and work out the con-
sequences of their interactions. Unfortunately this complicates matters enormously.
Usually we can no longer solve the equations of motion exactly; for example, the Klein-
Gordon equation with Φ3 and Φ4 interactions becomes

(2 +m2
0) Φ = −g

2
Φ2 − λ

3!
Φ3 , (6.2)

which is non-linear in the fields. Since the field is not free, there is no simple ex-
pansion in terms of creation and annihilation operators. At some given time t0, we
could try to expand Φ(x, t0) into Fourier modes and formally evolve it with Φ(x, t) =
eiH(t−t0) Φ(x, t0) e−iH(t−t0), but H depends on higher powers of Φ which complicates

the solution. A state a†k|0〉 can evolve into a†
2|0〉, a†a2|0〉, a†3|0〉 terms etc., which

would describe the decay of a one-particle state into two- and three-particle states.
Hence, Φ(x) no longer creates just one-particle states but also multiparticle states.
Similarly, a fermion operator ψ in QED would not only create a single electron but also
states that contain an electron plus arbitrarily many photons; Aµ would create states
that contain besides a single photon also e+e− pairs.

As a consequence, the Hilbert space differs from the free theory: the ground state
of the free Hamiltonian H0 was the free vacuum |0〉; the ground state of the full Hamil-
tonian is the interacting vacuum |Ω〉. The masses m of the 1-particle momentum
eigenstates of H no longer equal the mass parameter m0 in the Lagrangian. The states
interact, and there may be bound states.



6 Interactions and the S-matrix 65

The basic quantity of interest is then the scattering amplitude or transition am-
plitude between such multiparticle states. Ideally one would like to find the exact
solution of the interacting QFT, compute the exact spectrum and calculate the in-
teractions exactly. Unfortunately such analytic solutions are available only for a few
special cases. In general one has to resort to numerical methods (lattice QFT, Dyson-
Schwinger equations, functional renormalization-group equations, . . . ) or simplified
models. On the other hand, as long as the couplings are small (g, λ � 1), one can
view Lint as a small perturbation and expand scattering amplitudes in powers of the
coupling constant(s). The resulting perturbation theory still allows us to perform
analytic calculations and it will be our tool of choice in practice. However, before
getting there (in Sec. 7), let us first make some general statements that are also valid
non-perturbatively.

Källén-Lehmann spectral representation. How can we determine the masses in
an interacting quantum field theory? First of all, Lorentz invariance tells us that the
commutation relation [Pµ, P ν ] = 0 must still hold, which implies that the momentum
operator commutes with the Hamiltonian and they are simultaneously diagonalizable:
[H,P ] = 0. We label their eigenstates by

H |λp〉 = Ep(λ) |λp〉 , P |λp〉 = p |λp〉 . (6.3)

There are now several types of possible Fock states:

• The ground state or vacuum |Ω〉, which is invariant under Poincaré transforma-
tions. In particular, this means it has zero energy and momentum: Pµ|Ω〉 = 0.

• One-particle states |p〉 with momentum p and energy Ep =
√
p2 +m2, where

m 6= m0 is no longer the mass parameter in the Lagrangian.

• N−particle states that are specified by a center-of-mass momentum p, the relative
momenta among the particles, and potentially further parameters. For example,
the lowest possible energy of a two-particle state in its rest frame (p = 0) is
2m, but since the two particles can have relative momentum, which contributes
to their total energy, the state can have any energy above 2m. Therefore, the
multiparticle states form a continuum. We write the energy of an N−particle
state |λp〉 as Ep(λ) = (p2 +m2

λ)1/2, where mλ ≥ 2m is the invariant mass of the
state (its energy in the rest frame).

• Bound states with mass < 2m, which have no analogue in the free theory.

The resulting eigenvalue spectrum of H will generally have the form shown in Fig. 6.1.
We can then write the completeness relation for the entire Fock space as

1 = |Ω〉〈Ω|+
∑
λ

∫
d3p

2Ep(λ)
|λp〉〈λp| . (6.4)

The sum over λ is formal and includes integrals over continuous parameters like relative
momenta.

Let’s have a look at the full two-point correlation function 〈Ω|TΦ(x)Φ(y) |Ω〉
for scalar fields (the ‘dressed propagator’). We start with 〈Ω|Φ(x)Φ(y) |Ω〉, whose
analogue in the free theory is Eq. (2.72). Inserting the completeness relation, we can
make the following observations:
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Figure 6.1: Eigenvalue spectrum of the Hamiltonian in terms of one-particle states with
mass m and multiparticle states with invariant mass mλ ≥ 2m.

• Remembering Eq. (2.61), we infer that the field behaves under translations as
Φ(x) = eix·P Φ(0) e−ix·P . Since the vacuum is translationally invariant, the VEV
of a single field 〈Ω|Φ(x) |Ω〉 = 〈Ω|Φ(0) |Ω〉 must be a constant. We can always
redefine the field by subtracting this constant so that the VEV vanishes. (For
higher spin fields it vanishes automatically by Lorentz invariance.)

• For the matrix element 〈Ω|Φ(x) |λp〉 we can also use translation invariance be-
cause λp is an eigenstate of Pµ:

〈Ω|Φ(x) |λp〉 = 〈Ω| eix·P Φ(0) e−ix·P |λp〉 = 〈Ω|Φ(0) |λp〉 e−ip·x . (6.5)

If we denote by U |λ0〉 = |λp〉 a Lorentz boost from the rest frame to the momen-
tum p, we can further exploit Lorentz invariance from Eq. (2.65):

〈Ω|Φ(0) |λp〉 = 〈Ω|UΦ(0)U−1|λp〉 = 〈Ω|Φ(0) |λ0〉 . (6.6)

This quantity measures the overlap of 〈Ω|Φ(0) with the state |λ0〉. For a one-
particle state it is simply a constant, whereas for a general N−particle state it
still depends on the relative momenta. In the following we will write

|〈Ω|Φ(0) |λ0〉|2 =:
Z(λ)

(2π)3
. (6.7)

Compare this with the free theory, Eq. (2.35): If Φ(x) would only create a free
particle from the vacuum, then the overlap would be Z(1) = 1 for one-particle
states and zero for all others. This is no longer true in an interacting theory
because Φ(x) creates not only one-particle states. In the context of renormaliza-
tion, we will later absorb Z(1) (which actually turns out to be infinite!) in the
definition of the renormalized field so that the r.h.s. above becomes 1/(2π)3;
however, this still leaves Z(λ) 6= 0 for multiparticle states.
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Figure 6.2: Left: spectral function of a typical field theory, with a single-particle peak
at M2 = m2 and a multiparticle continuum for M2 ≥ 4m2. Right: Analytic structure of
the corresponding dressed propagator with single-particle (and potential bound-state) poles,
together with a branch cut above p2 = 4m2.

For now, we arrive at

〈Ω|Φ(x)Φ(y) |Ω〉 =
1

(2π)3

∑
λ

∫
d3p

2Ep(λ)
e−ip(x−y) Z(λ) . (6.8)

Including the time ordering, we can make the same manipulations for the integral as
in the free theory, Eqs. (2.84) and (2.86), which leads to

〈Ω|TΦ(x)Φ(y) |Ω〉 =

∫
d4p

(2π)4
e−ip(x−y)

∑
λ

iZ(λ)

p2 −m2
λ + iε

=
∑
λ

Z(λ)DF (x− y,m2
λ) ,

where we abbreviated the free Feynman propagator by

DF (z,M2) :=

∫
d4p

(2π)4
e−ipz

i

p2 −M2 + iε
. (6.9)

Remember that the sum over λ is a multi-dimensional integral over relative momenta.
If we further define the spectral function

ρ(M2) :=
∑
λ

2π δ(M2 −m2
λ)Z(λ) , (6.10)

then we arrive at the Källén-Lehmann spectral representation:

〈Ω|TΦ(x)Φ(y) |Ω〉 =

∞∫
0

dM2

2π
ρ(M2)DF (x− y,M2) . (6.11)

Therefore, the spectral function encodes the change from a free propagator to a dressed
one. The spectral function for a typical theory is positive and has the form of Fig. 6.2.
The one-particle states lead to an isolated δ−function peak at M2 = m2, which allows
us to extract the squared mass m2 of the particle as the lowest-lying pole location
of the propagator in momentum space:∫

d4x eip(x−y) 〈Ω|TΦ(x)Φ(y) |Ω〉 =
iZ

p2 −m2 + iε
+

∞∫
4m2

dM2

2π

i ρ(M2)

p2 −M2 + iε
, (6.12)
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Figure 6.3: Idealized scattering process from r incoming to n outgoing particles.

where from now on we write Z = Z(1). The continuum of N−particle states begins at
M2 ≥ (2m)2, which leads to a branch cut in the propagator starting at p2 = 4m2. In
addition, there could be further bound state poles below M2 = (2m)2. This property
is usually more relevant in the context of composite fields (or higher n−point functions
of elementary fields) but it can also happen in an elementary two-point function. For
example, think of a scalar theory with a Φ3 interaction: a particle can split into two,
which contribute to the two-particle continuum, but in principle they could also form
a scalar bound state with mass below 2m.

S-matrix. The basic observables in scattering experiments are cross sections, which
are related to the transition amplitudes that describe the scattering of incoming states
|g, in〉 to outgoing states |h, out〉, cf. Fig. 6.3. Suppose that in the asymptotic past
t→ −∞ the state

|g, in〉 =

∫
d3q1 . . .

∫
d3qr g(q1, . . . qr) a

†
in(q1) . . . a†in(qr) |Ω〉 (6.13)

describes a collection of wave packets (defined by the function g) that correspond to
individual, well-separated single-particle states. When the particles approach each
other, they start to interact and scatter into the final state |h, out〉, which for t → ∞
describes again asymptotically free and well separated 1-particle states:

|h, out〉 =

∫
d3p1 . . .

∫
d3pn h(p1, . . .pn) a†out(p1) . . . a†out(pn) |Ω〉 . (6.14)

The in and out states are created from the interacting vacuum |Ω〉 by action of the
fields Φin and Φout at t→ ±∞. These are free fields that satisfy the free Klein-Gordon
equation, however with mass m 6= m0, which is the one-particle pole of the Feynman
propagator of the full interacting theory, and energy Ep =

√
p2 +m2. Therefore, we

can expand Φin and Φout into Fourier modes with corresponding creation and annihi-
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lation operators:

Φin(x) =

∫
d3p

2Ep

(
ain(p) fp(x) + a†in(p) f∗p (x)

)
,

Φout(x) =

∫
d3p

2Ep

(
aout(p) fp(x) + a†out(p) f∗p (x)

)
,

fp(x) =
1

(2π)3/2
e−ipx

∣∣∣
p0=Ep

.

(6.15)

The question is: how is the full interacting field Φ(x) related to Φin(x) and Φout(x)?
What we will need in the following is that

〈α|Φ(x) |β〉 t→−∞−−−−→ C 〈α|Φin(x)|β〉 ,
〈α|Φ(x) |β〉 t→∞−−−−→ C 〈α|Φout(x)|β〉 .

(6.16)

This does not hold as an operator equation, i.e., the field Φ(x) does not simply become
a free field for t→ ±∞. The corresponding statement is Haag’s theorem which says,
in short, that a field that is free at a given time remains free for all times. Since we
cannot perform measurements with free fields, the corresponding quantum field theory
would not have any empirical content. Hence, we only need Eq. (6.16) to hold in the
weak sense, i.e., the matrix elements of Φ(x) should converge to those of Φin,out(x)
in a suitable manner at t → ±∞. For the overlap of Φ(x) between the vacuum and
one-particle states this entails

|〈Ω|Φ(0) |λ0〉|2︸ ︷︷ ︸
Z/(2π)3

= C2 |〈Ω|Φin(0) |λ0〉|2︸ ︷︷ ︸
1/(2π)3

(6.17)

and therefore C =
√
Z, whereas the (momentum-dependent) overlap with multiparticle

states Z(λ) must vanish for t → ±∞. This can be intuitively understood as follows:
although all interactions between the incoming and outgoing particles are switched off
asymptotically, the self-interactions of the particles remain, which leads to m 6= m0.

LSZ reduction formula. The operators Φin(x) and Φout(x) act on the same Hilbert
space of a free theory. Hence, there must be an operator S (the scattering operator)
that maps the out states onto the in states: |g, in〉 = S |g, out〉. From this definition it
follows that

S is unitary: S−1 = S†, S |Ω〉 = |Ω〉, Φin(x) = S Φout(x)S−1 . (6.18)

The goal in the following will be to compute the transition amplitude or S-matrix
element

〈h, out | g, in〉 = 〈h, out |S | g, out〉 = 〈h, in |S | g, in〉 . (6.19)

For simplicity we will work directly with the matrix element

〈p1 . . . pn, out | q1 . . . qr, in〉 = 〈Ω | aout(p1) . . . aout(pn) a†in(q1) . . . a†in(qr) |Ω〉 , (6.20)
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but keep in mind for the following discussion that we should really smear this with
normalizable wave packets as in Eqs. (6.13–6.14).

The strategy in calculating the S-matrix element is to successively replace the cre-
ation and annihilation operators that appear in Eq. (6.20) by the fully interacting field
Φ(x). To simplify the notation, we return to our definition of the Lorentz-invariant
scalar product between fields in Eq. (1.22),

(Ψ,Φ) := i

∫
d3xΨ∗(x)

↔
∂0 Φ(x) = i

∫
d3x

[
Ψ∗(x)Φ̇(x)− Ψ̇∗(x)Φ(x)

]
, (6.21)

which is time-independent as long as Ψ(x) and Φ(x) are solutions of the free Klein-
Gordon equation. The relations

(fp, fp′) = 2Ep δ
3(p− p′) , (f∗p , f

∗
p′) = −2Ep δ

3(p− p′) , (fp, f
∗
p′) = 0 (6.22)

then allow us to extract the Fourier coefficients of Eq. (6.15) as

ain(p) = (fp,Φin),

a†in(p) = −(f∗p ,Φin) ,

aout(p) = (fp,Φout),

a†out(p) = −(f∗p ,Φout) .
(6.23)

To begin with, we can write for any function F (x):

∞∫
−∞

dt
∂

∂t
F (x) = lim

t→∞
F (x)− lim

t→−∞
F (x) . (6.24)

Therefore, we can establish the relation

Z−1/2

∞∫
−∞

dt ∂0 (fp,Φ) = lim
t→∞

Z−1/2 (fp,Φ)− lim
t→−∞

Z−1/2 (fp,Φ)

= (fp,Φout)− (fp,Φin) = aout(p)− ain(p) ,

(6.25)

where we used Eq. (6.16). Remember that this only holds inside expectation values
such as that in Eq. (6.20); it is not an operator identity because the identification of
Z−1/2 Φ(x) with Φout(x), Φin(x) for t → ±∞ is only valid in the weak sense. Note
that the terms (fp,Φout) and (fp,Φin) in the second line are time-independent because
Φout(x) and Φin(x) solve the Klein-Gordon equation, but (fp,Φ) depends on time since
Φ(x) is the interacting field. We can then work out its time derivative:

∂0 (fp,Φ) = i

∫
d3x ∂0

[
f∗p (x)

↔
∂ 0 Φ(x)

]
= i

∫
d3x

[
f∗p (x) ∂2

0 Φ(x)− ∂2
0 f
∗
p (x) Φ(x)

]
,

(6.26)

because the crossed terms cancel each other. The idea is now to shuffle the time
derivative in the second term from f∗p to Φ. Since f∗p is a plane wave, cf. Eq. (6.15),
we can convert the time derivative into a spatial derivative:

(∂0)2 f∗p (x) = −E2
p f
∗
p (x) = −(p2 +m2) f∗p (x) = (∇2 −m2) f∗p (x) . (6.27)
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At this point we should remember that we will ultimately put this back into the S-
matrix element (6.19) that is smeared with wave packets; otherwise the following partial
integration cannot be justified because the surface terms would not vanish. In that case
we obtain

∂0 (fp,Φ) = i

∫
d3x f∗p (x) (∂2

0 −∇2 +m2) Φ(x) = i

∫
d3x f∗p (x) (2 +m2) Φ(x) . (6.28)

In total, Eq. (6.25) becomes

aout(p) = ain(p) + iZ−1/2

∫
d4x f∗p (x) (2 +m2) Φ(x) , (6.29)

which again holds only inside the expectation value. Recall that Φ(x) does not satisfy
the free Klein-Gordon equation, otherwise the integral would be zero.

Putting this back into the S-matrix element (6.20) and thereby replacing aout(pn),
we can successively permute ain(pn) to the right until it annihilates on the vacuum.
Each step generates a factor 2Epn δ

3(pn− qj), together with another S-matrix element
where two momenta are taken out. Therefore, they describe the scattering of r − 1 in
states into n − 1 out states. From the perspective of the full S-matrix element they
are disconnected terms, whereas the connected contribution comes from the second
piece in Eq. (6.29):

iZ−1/2

∫
d4x f∗p (x) (2 +m2) 〈Ω | aout(p1) . . .Φ(x) a†in(q1) . . . a†in(qr) |Ω〉 . (6.30)

This completes the first step. Next, we want to repeat the procedure for a†in(q1)
which appears to the right of Φ(x). However, in this case it is not sufficient to write

a†in(q1) = a†out(q1) + . . . because ultimately a†out(q1) should annihilate on the left,
but we still need to interchange its position with Φ(x). Earlier we teased that it is
the time-ordered propagator (with the Feynman prescription to integrate over poles),
and time-ordered correlation functions, that will become important in the interacting
theory. In fact, the next step is where the time ordering finally comes in:

Φ(x) a†in(q)− a†out(q) Φ(x) =

= (f∗q ,Φout) Φ(x)− Φ(x) (f∗q ,Φin)

= i

∫
d3y fq(y)

←→
∂

∂y0
Φout(y) Φ(x)− i

∫
d3y fq(y)

←→
∂

∂y0
Φ(x) Φin(y)

= iZ−1/2

[
lim
y0→∞

∫
d3y fq(y)

←→
∂

∂y0
Φ(y) Φ(x)− lim

y0→−∞

∫
d3y fq(y)

←→
∂

∂y0
Φ(x) Φ(y)

]

= iZ−1/2

∞∫
−∞

dy0 ∂

∂y0

∫
d3y fq(y)

←→
∂

∂y0
TΦ(x) Φ(y)

= iZ−1/2

∫
d4y fq(y) (2y +m2)TΦ(x) Φ(y). (6.31)
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In the third equality we used the fact that the scalar products with Φin and Φout are
time-independent, so we are free to shift the time variable y0 → ±∞ and replace the
interacting field with the in and out fields (which holds inside matrix elements). In
the fourth equality we used Eq. (6.24), and we finally repeated the steps that led us

from Eq. (6.26) to (6.29). As desired, the second term a†out(q) Φ(x) on the l.h.s. will
produce disconnected terms upon permuting it to the left, whereas the interacting part
is generated by the r.h.s. of the equation.

In this way one can proceed until all creation and annihilation operators are replaced
by the respective field operators. The final result is

〈p1 . . . pn, out | q1 . . . qr, in〉conn. = (iZ−1/2)n+r

[
n∏
i=1

∫
d4xi f

∗
pi(xi) (2xi +m2)

]
×

×
[

r∏
j=1

∫
d4yj fqj (yj) (2yj +m2)

]
〈Ω |TΦ(x1) . . .Φ(xn) Φ(y1) . . .Φ(yr) |Ω〉 .

(6.32)

This is known as the LSZ reduction formula (Lehmann, Symanzik, Zimmermann).
It reduces the computation of S-matrix elements to the calculation of the time-ordered
correlation functions or simply Green functions of the fully interacting theory:

G(x1 . . . xn, y1 . . . yr) := 〈Ω |TΦ(x1) . . .Φ(xn) Φ(y1) . . .Φ(yr) |Ω〉 . (6.33)

For further interpretation, we can use∫
d4x f∗p (x) (2 +m2) Φ(x) =

∫
d4x (2 +m2) f∗p (x) Φ(x)

= (−p2 +m2)

∫
d4x f∗p (x) Φ(x)

(6.34)

for wave packets, which leads to the following form of the LSZ formula:

n∏
i=1

∫
d4xi f

∗
pi(xi)

r∏
j=1

∫
d4yj fqj (yj)G(x1 . . . xn, y1 . . . yr)

=

(
n∏
i=1

i
√
Z

p2
i −m2

)(
r∏
j=1

i
√
Z

q2
j −m2

)
〈p1 . . . pn, out | q1 . . . qr, in〉conn. ,

(6.35)

plus further disconnected terms. The left-hand side is now just the Fourier transform
of the Green function, i.e., the Green function in momentum space (modulo factors
(2π)3/2 from the f ’s). Note that all momenta in the S-matrix element are onshell,
p2
i = q2

j = m2, because these are the physical momenta of 1-particle states. The
prefactors on the r.h.s. are therefore singular; they correspond exactly to the pole
contributions of the full propagator of the theory, cf. Eq. (6.12). Consequently, they
must cancel with the l.h.s.: the Green function will contain a sum of terms with poles
in the momenta, where only those terms survive in the connected S-matrix whose poles
cancel exactly with the kinematic factors

n∏
i=1

(p2
i −m2)

r∏
j=1

(q2
j −m2) , (6.36)
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because all other contributions are not connected. Therefore, the recipe for calculating
S-matrix elements is as follows:

• Calculate the Fourier transform of the Green function G(x1 . . . xn, y1 . . . yr).

• Set all external momenta onshell: p2
i = m2, q2

j = m2. This generates a sum of
terms that are distinguished by their pole structure.

• To obtain the connected S-matrix element, take the residue with respect to the
n+ r pole factors.

This sounds straightforward enough, but the open question is: how can we actually
calculate such Green functions?


