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7 Perturbation theory

The goal in the following is to calculate the n-point Green functions

〈Ω |TΦ(x1) . . .Φ(xn) |Ω〉 (7.1)

of a scalar theory in perturbation theory. That is, we assume that the interactions
contained in Lint = L − L0 or Hint = H −H0 are so weak that we can systematically
expand these Green functions (and therefore also scattering amplitudes) in powers of
the coupling constant. Perturbation theory has turned out to be immensely successful
in many different contexts such as QED, the weak interaction, (to some extent) QCD,
or also effective field theories.

Correlators in the interaction picture. How can we rearrange Eq. (7.1) in a form
where Lint appears explicitly? To begin with, recall Eq. (2.61) which follows from
translation invariance and tells us how the field Φ(x) evolves in time:

Φ(t,x) = eiH(t−t0) Φ(t0,x) e−iH(t−t0) . (7.2)

Φ(x) is the field operator in the Heisenberg picture and carries the full spacetime
dependence. Now let’s define the interaction picture field ΦI(x) as a field that
‘evolves’ with the Hamiltonian H0 of the free theory:

ΦI(t,x) = eiH0(t−t0) ΦI(t0,x) e−iH0(t−t0) . (7.3)

By definition this is a free field that satisfies the free KG equation with mass m0, and we
can expand it into Fourier modes as in Eq. (1.16). We now assume that the two fields are
equal at some time t0, where they have the same functional form Φ(t0,x) = ΦI(t0,x).
In that case we can relate Φ(x) and ΦI(x) at arbitrary time x0 = t by

Φ(t,x) = U †(t, t0) ΦI(t,x)U(t, t0) , U(t, t0) = eiH0(t−t0) e−iH(t−t0) . (7.4)

Note that U(t, t0) 6= e−iHint(t−t0) because H does not commute with H0.
Actually the assumption Φ(t0,x) = ΦI(t0,x) cannot hold in general, because Haag’s

theorem states that a free field will always remain free. That is, there is no unitary
transformation that relates Φ to ΦI , and consequently the interaction picture does not
exist. We will ignore this problem in the following and hope that everything we do can
still be justified in the sense of weakly converging matrix elements.

In any case, we can derive the following Schrödinger equation for the evolution
operator U(t, t0):

i
∂U

∂t
= eiH0(t−t0) (H −H0) e−iH(t−t0)

= eiH0(t−t0)Hint e
−iH0(t−t0) U(t, t0) =: HI(t)U(t, t0) .

(7.5)

HI(t) is the Hamiltonian in the interaction picture, i.e., Hint evolved with H0. It is
simple because the functional dependence of HI(t) on ΦI(t,x) is the same as that of
Hint on Φ(t0,x), for example in Φ4 theory:

Hint(t0) =

∫
d3x

λ

4!
Φ(t0,x)4 ⇒ HI(t) =

∫
d3x

λ

4!
ΦI(t,x)4 . (7.6)
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Figure 7.1: Symmetric integration domain in Eq. (7.7).

Therefore, the solution of (7.5) allows us to express the full field Φ(t,x) in terms of
the interaction-picture Hamiltonian HI(t) and ultimately the interaction-picture field
ΦI(t,x), which is simple to handle because it is a free field that can be expanded into
Fourier modes.

Another remark is in order: the explicit form for U(t, t0) in Eq. (7.4) only holds
for the case where H, H0 and Hint are all time-independent. This is true for the full
Hamiltonian H but in general not for H0(t) and Hint(t): Ḣint(t) = i[H,Hint(t)] =
i[H0(t), Hint(t)]. Fortunately, it is not necessary to specify U(t, t0) explicitly: one can
show that the generic relation between Φ(x) and ΦI(x) in Eq. (7.4) leads to the same
Schrödinger equation.

Eq. (7.5) is solved by

U(t, t0) = 1 + (−i)
t∫

t0

dt1HI(t1) + (−i)2

t∫
t0

dt1

t1∫
t0

dt2HI(t1)HI(t2) + . . . (7.7)

To see this, take the time derivative with (∂/∂t)
∫ t
t0
dt′f(t′) = f(t): each term in the

series reproduces the previous one with a factor −iHI(t), and the initial condition
U(t0, t0) = 1 is satisfied. Note that the factors HI in the integrand are automatically
time-ordered because t1 > t2 > t3 > . . . , so we can equally write

U(t, t0) = 1 + (−i)
t∫

t0

dt1HI(t1) +
(−i)2

2!

t∫
t0

dt1

t∫
t0

dt2 T {HI(t1)HI(t2)}+ . . . (7.8)

Here we additionally exploited the fact that the integral is symmetric in t1 and t2,
cf. Fig. 7.1; this also holds for the higher-order diagrams. The series defines the time-
ordered exponential

U(t, t0) =: T exp

[
−i

t∫
t0

dt′HI(t
′)

]
(7.9)



76 Quantum field theory

as the time ordering of the individual terms in the series expansion. From the expansion
one can also prove the properties

U †(t1, t2) = U−1(t1, t2) = U(t2, t1) ,

U(t1, t2)U(t2, t3) = U(t1, t3) for t1 ≥ t2 ≥ t3 .
(7.10)

The hermitian conjugation switches all i factors and can be reversed by exchanging the
integration limits, which leads to the first relation. To verify the second one, observe
that U(t, t2)U(t2, t3) satisfies the same Schrödinger equation (7.5) so it can be written
as U(t, t′), and the boundary condition U(t3, t

′) = 1 entails t′ = t3.

With Eqs. (7.4) and (7.10) at hand, we can work out the full two-point function.
Consider first the case x0 > y0:

〈Ω|Φ(x) Φ(y) |Ω〉 = 〈Ω|U †(x0, t0) ΦI(x)U(x0, t0)U †(y0, t0) ΦI(y)U(y0, t0) |Ω〉
= 〈Ω|U(t0, x0) ΦI(x)U(x0, y0) ΦI(y)U(y0, t0) |Ω〉 .

(7.11)

Let’s insert some large time T � x0, y0:

· · · = 〈Ω|U(t0, T ) U(T, x0) ΦI(x)U(x0, y0) ΦI(y)U(y0,−T )︸ ︷︷ ︸
time-ordered

U(−T, t0) |Ω〉 . (7.12)

The bracket is then already time-ordered, so we can put a time-ordering symbol in
front of it and combine all U ’s inside:

· · · = 〈Ω|U(t0, T )T
{

ΦI(x) ΦI(y)U(T,−T )
}
U(−T, t0) |Ω〉 . (7.13)

Since this is time-ordered, the opposite case with y0 > x0 gives the same result, and
therefore the full correlator becomes

〈Ω|TΦ(x) Φ(y) |Ω〉 = 〈Ω|U(t0, T )T
{

ΦI(x) ΦI(y)U(T,−T )
}
U(−T, t0) |Ω〉 . (7.14)

The quantity U(T,−T ) is given by

U(T,−T ) = T exp

[
−i

T∫
−T

dtHI(t)

]
= T eiSI , (7.15)

where SI =
∫
d4xLI = −

∫
d4xHI is the action corresponding to the interacting part

that depends on the field ΦI(x). We assumed that the interacting Lagrangian contains
no field derivatives so that LI = −HI . The expression (7.14) still depends on the
arbitrary reference time t0 and the interacting vacuum |Ω〉 which we have to get rid of.

Free vs. interacting vacuum. We would like to relate the full interacting vacuum
|Ω〉 to the vacuum |0〉 of the free theory. To do so, recall that H |Ω〉 = 0 and 〈Ω|Ω〉 = 1.
That is, we ‘renormalized’ the interacting theory so that the vacuum energy EΩ = 0,
which we motivated with the arbitrary counterterm V0 in the Lagrangian. However,
doing so removes our freedom to set the vacuum energy in the corresponding free theory
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(defined by H0) to zero: H0 |n〉 = En |n〉 with E0 ≤ E1 ≤ E2 ≤ . . . , but E0 6= 0. In
any case we can write

U(−T, t0) |Ω〉 = e−iH0(T+t0) eiH(T+t0) |Ω〉︸ ︷︷ ︸
=|Ω〉

=

∞∑
n=0

e−iEn(T+t0) |n〉〈n|Ω〉 .

In the last step we inserted a complete set of states of the free theory. Assuming that
〈0|Ω〉 6= 0, we can eliminate the contributions from the states with higher energy by
taking the limit T → ∞(1 − iε) because this will eliminate all contributions from the
energies En > E0:

U(−T, t0) |Ω〉 T→∞(1−iε)−−−−−−→ e−iE0(T+t0) |0〉〈0|Ω〉 =: c(−T, t0) |0〉 .

The analogous case for 〈Ω| gives

〈Ω|U †(T, t0)
T→∞(1−iε)−−−−−−→ 〈0| c∗(T, t0) . (7.16)

After plugging this into Eq. (7.14) we are still left with the awkward factors c(−T, t0)
and c∗(T, t0). We can remove them too by noting that

〈Ω|Ω〉 = 1
T→∞(1−iε)−−−−−−→ c∗(T, t0) c(−T, t0) 〈0|U(T, t0)U †(−T, t0) |0〉

= c∗(T, t0) c(−T, t0) 〈0|U(T,−T ) |0〉 .
(7.17)

Inserting everything into Eq. (7.14) we arrive at the final result for the full propagator:

〈Ω|TΦ(x) Φ(y) |Ω〉 = lim
T→∞(1−iε)

〈0|T
{

ΦI(x) ΦI(y)U(T,−T )
}
|0〉

〈0|U(T,−T ) |0〉 . (7.18)

It can be generalized to arbitrary n−point functions:

〈Ω|TΦ(x1) . . .Φ(xn) |Ω〉 = lim
T→∞(1−iε)

〈0|T
{

ΦI(x1) . . .ΦI(xn) eiSI
}
|0〉

〈0|T eiSI |0〉 . (7.19)

With this formula we have in principle everything in place to do perturbation theory.
We could expand eiSI in the small coupling constant, express ΦI in terms of creation and
annihilation operators (since it is a free field), take the time ordering, and calculate any
correlation function simply by brute force. However, this also becomes quite repetitive
and cumbersome, which is where Wick’s theorem comes to rescue.

Wick’s theorem. To shorten the notation, we will write the interaction-picture field
as ΦI(x) = φ(x). Since it is a free field, we can decompose it into positive- and
negative-frequency parts:

φ(x) =
1

(2π)3/2

∫
d3p

2Ep
(ap e

−ipx + a†p e
ipx) = φ+(x) + φ−(x) , (7.20)

with φ+(x) |0〉 = 0 = 〈0|φ−(x). In the following we want to express products of field
operators in terms of their normal ordered versions, which means that all creation oper-
ators are shuffled to the left and all annihilation operators to the right or, equivalently,
all instances of φ−(x) go to the left and all instances of φ+(x) to the right.
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Consider the product of two fields φ(x)φ(y). In terms of positive- and negative-
frequency modes it has the form

φ(x)φ(y) = φ+(x)φ+(y) + φ+(x)φ−(y) + φ−(x)φ+(y) + φ−(x)φ−(y)

= :φ(x)φ(y) : + [φ+(x), φ−(y)] ,
(7.21)

and likewise φ(y)φ(x) = :φ(x)φ(y) : + [φ+(y), φ−(x)]. Inserting the Fourier modes, we
find for the commutator

[φ+(x), φ−(y)] =
1

(2π)3

∫
d3p

2Ep
e−ip(x−y)

∣∣∣
p0=Ep

= D(x− y) , (7.22)

where D(x− y) has been given in Eq. (2.72). In total this yields

Tφ(x)φ(y) = :φ(x)φ(y) : + Θ(x0 − y0)D(x− y) + Θ(y0 − x0)D(y − x)

= :φ(x)φ(y) : +DF (x− y) .
(7.23)

Since 〈0| :O : |0〉 = 0, this implies for the vacuum expectation value

〈0|Tφ(x)φ(y) |0〉 = DF (x− y) , (7.24)

which is just our earlier definition of the Feynman propagator (remember that φ(x) is
a free field and |0〉 the free vacuum).

What is useful about the identity is that we can immediately generalize it to ar-
bitrary n−point functions. This is known as Wick’s theorem, and it states that
the time-ordered product Tφ(x1) . . . φ(xn) is equal to the normal-ordered product
: φ(x1) . . . φ(xn) : plus all possible combinations of normal orderings and contractions
of distinct fields. A contraction of two fields φ(x1), φ(x2) is defined to be equal to the
Feynman propagator D(x1 − x2) and denoted by

φ(x)φ(y) = DF (x− y) . (7.25)

Using the shorthand notation φ(xi) = φi and DF (xi − xj) = Dij , let’s illustrate the
result for the four-point function:

T {φ1 φ2 φ3 φ4} = :φ1 φ2 φ3 φ4 :

+D12 :φ3 φ4 : +D13 :φ2 φ4 : +D14 :φ2 φ3 :

+D23 :φ1 φ4 : +D24 :φ1 φ3 : +D34 :φ1 φ2 :

+D12D34 +D13D24 +D14D23 .

(7.26)

The Wick theorem for arbitrary n−point functions can be proven via induction (see
Peskin-Schroeder, p.90). Only the last line above survives when taking vacuum expec-
tation values, and therefore the VEV of a time-ordered product of fields equals the sum
over all possible contractions:

〈0|T {φ1 φ2 φ3 φ4} |0〉 = D12D34 +D13D24 +D14D23 . (7.27)

If n is odd, the VEV vanishes because there is always an odd number of normal-ordered
fields remaining.
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Feynman diagrams. A diagrammatic way to visualize such contractions is to draw
Feynman diagrams: draw a point for each spacetime argument xi and connect them
by lines, which represent the Feynman propagators of the free theory. The four-point
function from Eq. (7.27) then becomes

〈0|T {φ1 φ2 φ3 φ4} |0〉 = . (7.28)

More interesting are expressions that contain more than one field at the same spacetime
point, which leads to loop diagrams. Let’s put Eq. (7.18) for the two-point function
in φ4 theory to use. When we expand the exponential in the numerator to O(λ) we
obtain

〈0|Tφ(x)φ(y) e−i
λ
4!

∫
d4z φ(z)4 |0〉 =

= 〈0|Tφ(x)φ(y) |0〉 − i λ
4!
〈0|Tφ(x)φ(y)

∫
d4z φ(z)4 |0〉+ . . .

(7.29)

The first term is just the propagator line from x to y. Applying the Wick theorem to
the combination φ(x)φ(y)φ(z)4 yields only two distinct expressions:

• If we contract φ(x) with φ(y), there are three distinguishable ways how to contract
φ(z) with φ(z):

φ(x)φ(y)φ(z)φ(z)φ(z)φ(z) .

• if we contract φ(x) with φ(z) (four possibilities) and φ(y) with φ(z) (three pos-
sibilities), there is one possibility left how to contract φ(z) with φ(z):

φ(x)φ(y)φ(z)φ(z)φ(z)φ(z) .
In total, this gives

〈0|T
{
φx φy φz φz φz φz

}
|0〉 = 3 ·DxyDzzDzz + 4 · 3 ·DxzDyzDzz , (7.30)

or in terms of diagrams:

〈0|T
{
φx φy

∫
z

φz φz φz φz

}
|0〉 = 3

 + 4 · 3

  , (7.31)

where we abbreviated
∫
d4z =

∫
z.

Clearly, for higher products of fields the number of possible Wick contractions will
rise dramatically. Fortunately, however, this number almost cancels with the factors 4!
from the denominators in the Taylor expansion. In the example above, the final prefac-
tors are 1/8 and 1/2. Their denominators 8 and 2 are called symmetry factors of the
diagrams, because they count the number of possibilities to exchange the components
without changing the diagram itself. For example:

(7.32)
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In the first diagram we can flip both the upper and the lower loop horizontally, and we
can exchange the loops vertically, which gives 2× 2× 2 = 8. In the second diagram we
can only do a horizontal flip, so the symmetry factor is 2. In the third diagram there
are 3! = 6 possibilities to exchange the three internal lines, and in the fourth diagram
we can additionally perform a horizontal flip (3! × 2 = 12). Note that the external
points x and y are fixed and cannot be flipped.

Feynman rules. These observations hold in general and can be summarized by the
Feynman rules. Consider an n−point function for a theory with a φm interaction:

〈0|Tφ(x) . . . φ(xn) e−i
λ
m!

∫
d4z φ(z)m |0〉 . (7.33)

You can find all diagrams at a given order O(λk) in perturbation theory if you draw

• n external points xi,

• k internal points zj (vertices)
with m incoming lines,

• connect all points by Feynman
propagators of the free theory,

• divide each diagram
by its symmetry factor,

• and sum up all diagrams in the end.

It is usually more convenient to write the Feynman propagator in momentum space:

DF (x− y) =

∫
d4p

(2π)4
e−ip(x−y)DF (p) , DF (p) =

i

p2 −m2
0 + iε

. (7.34)

We will use the convention that the momentum points from right to left, i.e., from y to
x. This is irrelevant for a scalar propagator because DF (x− y) = DF (y − x), but the
distinction will become important when we generalize the Feynman rules to fermions.

As an example, let’s work out the ‘tadpole’ diagram, now with the abbreviation∫
p =

∫ d4p
(2π)4 :

=
1

2
(−iλ)

∫
d4z DF (x− z)DF (y − z)DF (z − z)

= − iλ
2

∫
d4z

∫
p

∫
q

∫
k

e−ip(x−z) eiq(y−z)DF (p)DF (q)DF (k)

= − iλ
2

∫
p

∫
q

∫
k

e−ipx eiqyDF (p)DF (q)DF (k) (2π)4 δ4(p− q) .

(7.35)
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From here one can read off the Feynman rules ‘in momentum space’ (this is a bit
of a misnomer because the Green function is still given in real space), which are easier
to handle in practice:

•) = e−ipx

•) = −iλ (2π)4 δ4
(∑

pi −
∑
qj

)

•) = DF (p) =
i

p2 −m2
0 + iε

•) integrate over all momenta:

∫
d4p

(2π)4

•) divide by the symmetry factor.

Propagator in φ4 theory. Let’s put the Feynman rules to use and calculate the
propagator of φ4 theory, i.e., all diagrams that contribute to

〈0|Tφ(x)φ(y) e−i
λ
m!

∫
d4z φ(z)m |0〉 (7.36)

up to O(λk). The propagator has two external points x and y, and a diagram at O(λk)
has k vertices. Here is the complete list up to O(λ2):

• O(λ0) :

• O(λ1) :

• O(λ2) :

Observe that we arrive at the same result if we multiply the sum of all connected
diagrams (those in the boxes) by the sum of all vacuum bubbles:[

+ + ++ + . . .

]
×
[

+ + + +1 + . . .

]
.

This is not a coincidence because so far we have only dealt with the numerator in
Eq. (7.19). To obtain the full Green function, we should also take into account the
denominator

〈0|T e−i λm!

∫
d4z φ(z)m |0〉 , (7.37)
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which is called the partition function. Its perturbative expansion generates just these
vacuum bubbles:

O(λ0) : 1 O(λ1) : O(λ2) :

so they factor out in the full Green function. Therefore we find

〈Ω|TΦ(x) Φ(y) |Ω〉 =
∑

(partially) connected terms . (7.38)

The meaning of ‘partially connected’ will become clear in a moment.

Four-point function in φ4 theory. As another example, let’s have a look at the
four-point function

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4) e−i
λ
m!

∫
d4z φ(z)m |0〉

〈0|T e−i λm!

∫
d4z φ(z)m |0〉

. (7.39)

It has four external points and k vertices at O(λk). Ignoring pure vacuum bubbles, the
diagrams up to O(λ2) are given by

• O(λ0) :

• O(λ1) :

• O(λ2) :

We already found the zeroth-order result in Eq. (7.28) as the sum of the three discon-
nected terms. Since they all have the same structure we have represented them here by
a single diagram for brevity. The same goes for the other diagrams where we have only
drawn one representative for each case, e.g. for the fourth diagram at O(λ2): we can
attach the two bubbles at the upper and lower line, and there are three permutations
of the two lines. Here it also becomes clear why we referred to ‘partially connected’
terms in Eq. (7.38): the full Green function is the sum of those diagrams where we can
no longer factor out vacuum bubbles, but they do not need to be fully connected.

1-particle irreducible diagrams. A class of diagrams that are important for the-
oretical analyses are the 1PI (one-particle irreducible) diagrams. The 1PI property is
defined as follows: consider only diagrams which are fully connected. Remove (‘ampu-
tate’) its external legs. If the diagram is still connected after cutting a single internal
line, it is 1PI. Some examples and counterexamples are:

1PI: not 1PI:
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Up to O(λ2), the 1PI contributions to the propagator and the four-point function are
therefore the following:

+ + and + .

Now let’s denote the full propagator by

G(x− y) = 〈Ω|TΦ(x) Φ(y) |Ω〉 =

∫
d4p

(2π)4
e−ip(x−y)G(p) = (7.40)

and define the self-energy of the scalar particle as the sum of all 1PI graphs for the
2-point function:

Σ(p)

i
:= + + . . .= + .

Observe that we can obtain the propagator by resumming its 1PI contributions:

G(p) =

= DF

[
1 +

Σ

i

(
DF +DF

Σ

i
DF + . . .

)]
(7.41)

= DF

[
1 +

Σ

i
G(p)

]
, (7.42)

and therefore

iG−1(p) = p2 −m2
0 − Σ(p) ⇔ G(p) =

i

p2 −m2
0 − Σ(p) + iε

. (7.43)

On the other hand, we know from the Källén-Lehmann spectral representation (6.12)
that the full propagator must have the form

G(p) =
iZ

p2 −m2 + iε
+ terms that are regular at p2 = m2 . (7.44)

In this sense the self-interactions of the particle (the quantum loop corrections) shift
its mass from m0 to m, so that the pole appears at p2 = m2, and Σ(p) takes indeed
the meaning of a self-energy.

What we have done here is resumming the geometric series. For illustration, replace Σ → x, DF → i
and G→ if(x):

f(x) = 1 + x+ x2 + · · · = 1 + x (1 + x+ . . . ) = 1 + xf(x) ⇒ f(x) =
1

1− x . (7.45)

Of course this is only justified for |x| < 1, i.e., as long as the coupling is small. Fortunately, Eq. (7.43)
can be also derived nonperturbatively: it is the Dyson-Schwinger equation for the propagator, which
is an exact equation:

. (7.46)
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All ingredients with filled blobs are dressed. In our example this means that

f(x) =
1

1− x = 1 + xf(x) = 1 + x+ x2f(x) = . . . (7.47)

is valid for all x except x = 1, because there is always a remainder that reproduces the exact result,
whereas the geometric series f(x) =

∑∞
n=0 x

n converges to the exact value only for |x| < 1. Hence, the
Dyson-Schwinger equation is more general than the perturbative expansion.

There may be also genuinely nonperturbative effects that are not reproducible by the perturbative
series, not even for a small coupling. An example is QCD in the chiral limit, where the dressed
propagator has a nonvanishing mass function even if the mass in the Lagrangian is zero. This effect is
due to spontaneous chiral symmetry breaking; although it follows from the Dyson-Schwinger equation,
it cannot be achieved at any order in perturbation theory.

In a similar way one can generate higher n−point functions from their 1PI counter-
parts because they can only differ by internal (fully resummed) propagator lines. Hence,
the 1PI correlation functions encode the ‘irreducible’ content of an n−point interaction.
In Sec. 8 we will also see that they are convenient for discussing the renormalization of
the quantum field theory.

Scattering amplitude. With all that in mind, we can now go back to the scattering
amplitude and the LSZ formula (6.35). There we found that the full Green function is
proportional to the connected S-matrix element, with one pole of mass m attached for
each external particle, plus further disconnected diagrams. We argued that the Green
function will be a sum of terms with different pole factors, and only those terms survive
in the S-matrix element where the number of poles matches exactly.

From the discussion above it is clear that such pole factors can only come from fully
resummed propagators with mass m. This means that only connected terms in the
Green function can contribute to the S-matrix, for example:

4 poles

2 poles
.

Since the external particles are onshell, removing the pole factors is equivalent to
removing the dressed propagators according to Eq. (7.44). We ignore the remaining Z
factors because in the process of renormalization we will absorb them into the fields.
In that way we arrive at the final result for the S-matrix element expressed through
the renormalized field Φ(x), which we write in terms of the invariant amplitudeM:

(2π)4 δ4
(∑

pi −
∑

qj

)
iM : = (2π)

3
2

(n+r)〈p1 . . . pn, out | q1 . . . qr, in〉conn.

= FT 〈Ω|TΦ(x1) . . .Φ(yr) |Ω〉 connected,
amputated,
onshell

. (7.48)

Since all external momenta are onshell, they describe physical particles with p2
i = m2.

The internal propagators, whose loop momenta are integrated over, are offshell and
correspond to virtual particles with k2 6= m2 (note that four-momentum conservation
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is still satisfied at each vertex). In this sense the scattering amplitude is the summation
over all possible virtual processes that can contribute.

What remains to be done is to state the Feynman rules for the scattering matrix
element. Let’s derive them explicitly for the 1-loop graph at O(λ2):

= I(x1, x2, y1, y2) (7.49)

Employing the Feynman rules in momentum space, the diagram takes the form

· · · = (−iλ)2

2

∫
p1

∫
p2

∫
q1

∫
q2

∫
k1

∫
k2

(2π)4 δ4(p1 + p2 − k1 − k2) (2π)4 δ4(k1 + k2 − q1 − q2)

× e−ip1x1 e−ip2 x2 eiq1 y1 eiq2 y2 (7.50)

×DF (p1)DF (p2)DF (q1)DF (q2)DF (k1)DF (k2) .

For the S-matrix element we need the amplitude in momentum space, so we take the
Fourier transform∫

d4x1 e
ip1x1

∫
d4x2 e

ip2 x2

∫
d4y1 e

−iq1 y1

∫
d4y2 e

−iq2 y2 I(x1, x2, y1, y2)

=
(−iλ)2

2
DF (p1)DF (p2)DF (q1)DF (q2)

×
∫
k1

∫
k2

(2π)4 δ4(p1 + p2 − k1 − k2) (2π)4δ4(k1 + k2 − q1 − q2)DF (k1)DF (k2)

︸ ︷︷ ︸
=(2π)4 δ4(p1+p2−q1−q2)

∫
kDF (k)DF (p1+p2−k)

(7.51)

By amputating the external propagators we obtain the contribution to the S-matrix
element:

FT {I(x1, x2, y1, y2)}amputated =

= (2π)4 δ4(p1 + p2 − q1 − q2)
(−iλ)2

2

∫
k

DF (k)DF (p1 + p2 − k)

= (2π)4 δ4(p1 + p2 − q1 − q2) iM .

(7.52)

The δ−function reflects total momentum conservation; we already anticipated it when
we defined the invariant amplitude via Eq. (7.48). Therefore, the result is simply

iM =
(−iλ)2

2

∫
k

DF (k)DF (p1 + p2 − k) . (7.53)
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From this expression we can read off the Feynman rules for S-matrix elements,
which become extremely simple because all external propagators have disappeared. For
an n−point function in a Φm theory at O(λk),

• draw n external points and k vertices with m ingoing lines, and connect all lines;

• write the propagators and vertices as

= DF (p) =
i

p2 −m2
0 + iε

, = −iλ , (7.54)

and impose momentum conservation at each vertex;

• integrate over all loop momenta
∫
d4k

(2π)4 ;

• divide by the symmetry factor of the diagram;

• set all external momenta onshell.

The two diagrams in Eq. (7.54) are the only elementary building blocks that we
have at our disposal in a Φ4 theory. In principle we can read them off directly from
the Lagrangian:

S =

∫
d4x

[
1

2
∂µΦ ∂µΦ− 1

2
m2

0 Φ2 − λ

m!
Φm

]
p.I.'
∫
d4x

[
−1

2
Φ (2 +m2

0) Φ− λ

m!
Φm

]
.

(7.55)

After taking a Fourier transform of each field, the Klein-Gordon operator becomes
the inverse tree-level propagator D−1

F (p) = p2 − m2
0 + iε in momentum space, and

the tree-level interaction vertex follows from removing the fields together with the
combinatorial factor 4!. In an extremely symbolic sense we could write the action (here
for a Φ4 theory) as

+
-1

S �

where the circles represent the fields Φ(x). Such a symbolic notation is indeed use-
ful in the path-integral approach, where Green functions are obtained as functional
derivatives of the classical action or the quantum effective action.

To summarize, the basic goal of a quantum field theory is to calculate the fully
dressed n−point Green functions, including all quantum corrections, by starting from
the tree-level expressions that are specified by the classical Lagrangian. These n−point
functions are the quantities that enter scattering matrix elements from where we can
extract observables.


