
Appendix C

Euclidean conventions

When employing a Minkowski metric (which is what we use throughout the main text),
one must be mindful of the iε prescription that is necessary to make many relations
in QFT well-defined. It arises from the imaginary-time boundary conditions (2.2.21),
which lead to boundary conditions on d4x and d4p integrals. An alternative is to define
x4 = ix0 and p4 = ip0 and perform a Wick rotation to write

∫
d4x =

∫
d3x

∞(1−iε)∫

−∞(1−iε)

dx0 = −i
∫
d3x

∞∫

−∞

dx4 ,

∫
d4p =

∫
d3p

∞(1+iε)∫

−∞(1+iε)

dp0 = i

∫
d3p

∞∫

−∞

dp4 .

(C.1)

Note that the integration paths in x0 and p0 rotate in opposite directions and thus

i

∫
d4x =

∫
d4xE but

∫
d4p = i

∫
d4pE . (C.2)

Since x2 = x2
0 − x2 = −x2 − x2

4 = −x2
E , this amounts to using a Euclidean metric

with signature (+,+,+,+).

Euclidean conventions. In general, we define Euclidean vectors aµE and tensors TµνE
such that their spatial parts agree with Minkowski space:

aµE =

[
a
ia0

]
, TµνE =

[
T ij iT i0

iT 0i −T 00

]
, (C.3)

where ‘E’ stands for Euclidean and no subscript refers to the Minkowski quantity. As
a consequence, the Lorentz-invariant scalar product of any two four-vectors differs by
a minus sign from its Minkowski counterpart:

aE · bE =
4∑

k=1

akE b
k
E = −a · b . (C.4)

Therefore, a vector is spacelike if a2 > 0 and timelike if a2 < 0. Because the Euclidean
metric is positive, we can drop the distinction between upper and lower indices.



2 Euclidean conventions

To preserve the meaning of the slash /a = a0γ0 − a · γ, we must also redefine the
γ−matrices:

iγµE =

[
γ
iγ0

]
, γ5

E = γ5 ⇒ /aE = aE · γE = i/a, {γµE , γνE} = 2δµν . (C.5)

Our sign convention for the Euclidean γ−matrices changes all signs in the Clifford
algebra relation to be positive, and since this implies (γiE)2 = 1 for i = 1 . . . 4 we can

choose them to be hermitian: γµE =
(
γµE
)†

. In the standard representation they read

γkE =

[
0 −iτk
iτk 0

]
, γ4

E =

[
1 0
0 −1

]
, γ5 =

[
0 1

1 0

]
,

where the τk are the usual Pauli matrices from Eq. (A.1.4). Also the generators of the
Clifford algebra are then hermitian, with (σµνE )† = σµνE :

σµν =
i

2
[γµ, γν ] ⇒ σµνE = − i

2
[γµE , γ

ν
E ] . (C.6)

Despite appearances, this does not alter the Lorentz transformation properties and
the definition of the conjugate spinor as ψ = ψ†γ4 (which was necessary to make
a bilinear ψψ Lorentz-invariant) remains intact. Denoting the representation matrix
ψ′(x′) = D(Λ)ψ(x) of the Lorentz transformation by

D(Λ) = exp

[
− i

4
ωµν σ

µν

]
= exp

[
− i

4
ωµνE σµνE

]
, (C.7)

then irrespective of γ4 (σµνE )† γ4 6= σµνE the relation γ4D(Λ)† γ4 = D(Λ)−1 still holds,
because the infinitesimal Lorentz transformation ωµνE which is related to its Minkowski
counterpart via (C.3) is now complex. Hence

ψ′(x′) = ψ†(x)D(Λ)† γ4 = ψ†(x) γ4D(Λ)−1 = ψD(Λ)−1 , (C.8)

and therefore ψψ is Lorentz-invariant, ψγµEψ transforms like a Lorentz vector, etc.
For derivatives, Eq. (C.3) implies

∂Eµ =

[
∇
−i∂0

]
⇒

∂ · a = ∂0 a
0 +∇ · a = (∂ · a)E ,

/∂ = γ0∂0 + γ · ∇ = i/∂E ,

� = ∂2
0 −∇2 = −�E .

(C.9)

As a result, a fermionic action becomes

eiS = exp

[
i

∫
d4xψ (i/∂ −m)ψ

]
= exp

[
−
∫
d4xE ψ (/∂E +m)ψ

]
= e−SE . (C.10)

In this way, the Euclidean action SE is non-negative and the term e−SE defines a
probability measure in the path integral formulation.

Another advantage of the Euclidean metric is that one can perform numerical cal-
culations directly in a given frame (e.g. using Mathematica), with explicit γ−matrices
and without the need for inserting the metric tensor in each summation. To transform
an expression from Minkowski to Euclidean space, it is usually sufficient to employ
the replacement rules collected in Table C.1 which can be read off from the spatial
components.
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Minkowski Euclidean

a · b −a · b
aµ aµ

γµ iγµ

γ5 γ5

/a −i/a
gµν −δµν
aµbν aµbν

∂µ ∂µ

Minkowski Euclidean

[γµ, γν ] −[γµ, γν ]

[γµ, /a] [γµ, /a]

[γµ, γν , /a] i[γµ, γν , /a]

[/a, /b] −[/a, /b]

εµνραaα iεµνραaα

εµναβaα bβ iεµναβaαbβ

εµαβγaα bβ cγ iεµαβγaαbβcγ

εµναβaαγβ −εµναβaαγβ

Table C.1: Replacement rules for some frequently occurring quantities. For expres-
sions with Lorentz indices, the right columns define their Euclidean version in the sense
of Eqs. (C.3) and (C.5). Each additional Minkowski summation over Lorentz indices
leads to a minus sign in Euclidean conventions.

Expressions involving εµναβ work along the same lines: the spatial parts of Lorentz
tensors are identical in Minkowski and Euclidean conventions, so this must also hold for
εµναβaαbβ. In Euclidean space the ε−tensor is defined by ε1234 = ε1234 = 1, whereas in
Minkowski conventions one has ε0123 = −ε0123 = 1, i.e., the spatial components switch
sign when lowering or raising indices. Denoting spatial indices by i, j, k and summing
over k, one has

εijαβaαbβ = εijk0 (akb0 − a0bk) = −εijk0 (akb0 − a0bk)

= iεijk4 (akb4 − a4bk)E =
(
iεijαβaαbβ

)
E
,

(C.11)

because ε1234 = 1 = ε1230 and a0 = −ia4
E . Repeating this for rank-1 and rank-3 tensors

results in the identities in Table C.1 (which would also follow from Eq. (C.29) below).

Euclidean Feynman rules. We now drop the index ‘E’ and write all subsequent
formulas in Euclidean space. The Euclidean action of QCD is

S =

∫
d4x

[
ψ ( /D + M)ψ + 1

4F
a
µν F

µν
a

]
, (C.12)

where Dµ = ∂µ+igAµ (this is consistent with Eq. (2.1.3) because the spatial component
is D = ∇+ igA). As a consequence,

Fµν(x) = −∂µAν + ∂νAµ − ig [Aµ, Aν ] . (C.13)

The Fourier transform is defined in Euclidean space,

F (x) =

∫
ddp

(2π)d
eip·x F (p) , F (p) =

∫
d4x e−ip·x F (x) , (C.14)

which would technically lead to i factors in front of the integrals in Minkowski space,
but this can be compensated by removing factors of i from the propagators and vertices
in momentum space.
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The resulting Feynman rules are obtained by taking the Feynman rules in Minkowski
space, transforming to Euclidean space, and splitting off a factor i from each 1PI quan-
tity (vertices and inverse propagators). This yields:

� Quark propagator:

S−1
0 (p) = Zψ (i/p+mB) , S0(p) =

1

Zψ

−i/p+mB

p2 +m2
B

(C.15)

� Gluon propagator (we redefine Tµνq = δµν − qµqν/q2 and Lµνq = qµqν/q2):

(D−1
0 )µν(q) = q2

(
ZA T

µν
q +

1

ξ
Lµνq

)
, Dµν

0 (q) =
Z(q2)Tµνq + ξ Lµνq

q2
(C.16)

� Ghost propagator:

D−1
G,0(q) = −Zc q2 , DG,0(q) = − 1

Zc q2
(C.17)

� Quark-gluon vertex:
Γµ0 = ig ta ZΓ γ

µ (C.18)

� Ghost-gluon vertex:
Γµgh,0(p) = −igfabc Z̃Γ p

µ (C.19)

� Three-gluon vertex:

Γµνρ3g,0(p1, p2, p3) = igfabc Z3g

[
(p1 − p2)ρ δµν

+(p2 − p3)µ δνρ + (p3 − p1)ν δρµ
]
.

(C.20)

� Four-gluon vertex:

Γµνρσ4g,0 = −g2Z4g

[
fabefcde (δµρδνσ − δνρδµσ)

+ facefbde (δµνδρσ − δνρδµσ)

+ fadefcbe (δµρδνσ − δµνδρσ)
]
.

(C.21)

The Lorentz-invariant dressing functions are identical except that the arguments pick
up minus signs. This is often indicated by capital letters such as Q2 = q2

E = −q2
M . In

general, if one defines

{s1, s2, s3, . . . } = {p2
E , q

2
E , pE · qE , . . . } = {−p2

M , −q2
M , −pM · qM , . . . } , (C.22)

then the quantities F (s1, s2, s3, . . . ) are the same in Euclidean and Minkowski space.
Also for this reason it is convenient to break down Lorentz-covariant relations to
Lorentz-invariant relations, because then the transformations from Minkowski to Eu-
clidean space and vice versa become trivial (assuming that the correct integration paths
for loop integrals are chosen such as in Fig. 2.7).
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Euclidean formulas. We suppress again the index ‘E’ and collect some useful Eu-
clidean formulas. The γ5 matrix is defined by

γ5 = −γ1γ2γ3γ4 = − 1

24
εµνρσγµγνγργσ (C.23)

with ε1234 = 1. It is convenient to define the fully antisymmetric combinations of Dirac
matrices by the commutators

[A,B] = AB −BA , (C.24)

[A,B,C] = [A,B]C + [B,C]A+ [C,A]B , (C.25)

[A,B,C,D] = [A,B,C]D + [B,C,D]A+ [C,D,A]B + [D,A,B]C . (C.26)

Inserting γ−matrices, this yields the antisymmetric combinations

[γµ, γν ] = γ5 ε
µναβ γαγβ , (C.27)

1
6 [γµ, γν , γρ] = 1

2 (γµγνγρ − γργνγµ) = 1
4 {[γµ, γν ], γρ} = −γ5 ε

µνρσγσ , (C.28)

1
24 [γµ, γν , γα, γβ] = −γ5 ε

µναβ . (C.29)

The various contractions of ε−tensors are given by

εµνρλ εαβγλ = δµα (δνβ δργ − δνγ δρβ) + δµβ (δνγ δρα − δνα δργ)

+ δµγ (δρβ δνα − δρα δνβ) ,

1
2 ε

µνλσ εαβλσ = δµα δνβ − δµβ δνα ,
1
6 ε

µλστ εαλστ = δµα ,

1
24 ε

λστω ελστω = 1 .

(C.30)

The ε−tensor satisfies a{µεαβγδ} = 0, where aµ is an arbitrary four-vector and {. . . }
denotes a symmetrization of indices.

Momentum integrations. Four-momenta are conveniently expressed through hy-
perspherical coordinates:

pµ =
√
p2




√
1− z2

√
1− y2 sinφ√

1− z2
√

1− y2 cosφ√
1− z2 y
z


 . (C.31)

For a particle in its rest frame, this corresponds to pµ = (0, im). (Actually, in Euclidean
space it does not matter where we put the mass since each direction is treated equally.)
A four-momentum integration reads

∫
d4p

(2π)4
=

1

(2π)4

1

2

∞∫

0

dp2 p2

1∫

−1

dz
√

1− z2

1∫

−1

dy

2π∫

0

dφ , (C.32)

where 1
2 dp

2 p2 = dp p3 and

∫
dΩ4 =

1∫

−1

dz
√

1− z2

1∫

−1

dy

2π∫

0

dφ = 2π2 (C.33)

is the integral over the unit sphere in four dimensions.
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Spinors. The positive- and negative-energy onshell spinors for spin-1/2 particles sat-
isfy the Dirac equations

(i/p+m)u(p) = 0 = u(p) (i/p+m) ,

(i/p−m) v(p) = 0 = v(p) (i/p−m) ,
(C.34)

where the conjugate spinor is u(p) = u(p)†γ4. Since the onshell spinors only depend on
p they are the same as in Minkowski space; for example in the standard representation:

us(p) =

√
Ep +m

2m

(
ξs

p·τ
Ep+m ξs

)
(C.35)

with

ξ+ =

(
1
0

)
, ξ− =

(
0
1

)
, Ep =

√
p2 +m2 .

We have normalized them to unity,

us(p)us′(p) = −vs(p) vs′(p) = δss′ ,

us(p) vs′(p) = vs(p)us′(p) = 0 ,
(C.36)

and their completeness relations define the positive- and negative-energy projectors:

∑

s

us(p)us(p) =
−i/p+m

2m
= Λ+(p) ,

∑

s

vs(p) vs(p) =
−i/p−m

2m
= −Λ−(p) .

(C.37)

Therefore, Λ+(p)u(p) = u(p) and Λ−(p)u(p) = 0.


