Appendix C

Euclidean conventions

When employing a Minkowski metric (which is what we use throughout the main text),
one must be mindful of the ie prescription that is necessary to make many relations
in QFT well-defined. It arises from the imaginary-time boundary conditions (2.2.21),
which lead to boundary conditions on d*z and d*p integrals. An alternative is to define

z* = izg and p* = ipy and perform a Wick rotation to write

oo (1—1€)

/d4x—/d3 /dmo——z/dw/dm,
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oo (14 (C.1)

/d4p—/d3 / dpgzz/d3 /dp4
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Note that the integration paths in xg and py rotate in opposite directions and thus

/d% = /d%E but /d4p: z/ dpg . (C.2)
2 __

Since 2% = 23 — x> = —x? — 23 = —z%, this amounts to using a Euclidean metric
with signature (4, +,+, +).

Euclidean conventions. In general, we define Euclidean vectors a, and tensors %"
such that their spatial parts agree with Minkowski space:

a T4 T
a% = [iao] ) Tgy = |:Z’T0i Too} ) (C.3)

where ‘E’ stands for Euclidean and no subscript refers to the Minkowski quantity. As
a consequence, the Lorentz-invariant scalar product of any two four-vectors differs by
a minus sign from its Minkowski counterpart:

4
ag-bp =Y diby=—a-b. (C.4)
k=1

Therefore, a vector is spacelike if a? > 0 and timelike if a®> < 0. Because the Euclidean
metric is positive, we can drop the distinction between upper and lower indices.
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To preserve the meaning of the slash ¢ = a%? — a - v, we must also redefine the
y—matrices:

) ¥ . u
’L’Yg' = |:Z’YO:| ) ’Y% = 75 = ¢E =4agp - YVE = Z¢7 {Vgany} = 20" (05)
Our sign convention for the Euclidean y—matrices changes all signs in the Clifford
algebra relation to be positive, and since this implies (7%)2 =1fori=1...4 we can

choose them to be hermitian: 4, = (’y}é)T. In the standard representation they read

| 0 —i7g 4 |1 0 5 [0 1

where the 73 are the usual Pauli matrices from Eq. (A.1.4). Also the generators of the

Clifford algebra are then hermitian, with (o%)T = o4

=5 ~5 D). (C.6)

Despite appearances, this does not alter the Lorentz transformation properties and
the definition of the conjugate spinor as @ = fy? (which was necessary to make
a bilinear 1) Lorentz-invariant) remains intact. Denoting the representation matrix
Y'(2") = D(A) ¢ (z) of the Lorentz transformation by

v |

" VA = o =

1 T oy v
D(A) = exp [—4 Wy U’“’] = exp [—4 why ol ] : (C.7)

then irrespective of v* (o )T v* # o/ the relation y* D(A)T4* = D(A)~! still holds,
because the infinitesimal Lorentz transformation w%” which is related to its Minkowski
counterpart via (C.3) is now complex. Hence

P (2') = o (z) DN = 9T (@) y* D(A) ™ = ¢ D(A) 7, (C.8)
and therefore 91} is Lorentz-invariant, 1%7%1/1 transforms like a Lorentz vector, etc.
For derivatives, Eq. (C.3) implies
0-a :80a0+V-a:(8-a)E,
v .
9, = [—i&o] = P=7"0+~ V=idg, (C.9)
0=03-V?=-0g.

As a result, a fermionic action becomes
¥ = exp [z/ d*z 4 (id — m) w] = exp [—/d4wa(@E +m)y| =eE.  (C.10)

In this way, the Euclidean action Sg is non-negative and the term e “F defines a
probability measure in the path integral formulation.

Another advantage of the Euclidean metric is that one can perform numerical cal-
culations directly in a given frame (e.g. using Mathematica), with explicit y—matrices
and without the need for inserting the metric tensor in each summation. To transform
an expression from Minkowski to Euclidean space, it is usually sufficient to employ
the replacement rules collected in Table C.1 which can be read off from the spatial
components.
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TABLE C.1: Replacement rules for some frequently occurring quantities. For expres-
sions with Lorentz indices, the right columns define their Euclidean version in the sense
of Egs. (C.3) and (C.5). Each additional Minkowski summation over Lorentz indices
leads to a minus sign in Euclidean conventions.

Expressions involving e#*®% work along the same lines: the spatial parts of Lorentz
tensors are identical in Minkowski and Euclidean conventions, so this must also hold for
ghvep aqbg. In Euclidean space the e—tensor is defined by 1234 = 1234 = 1, whereas in
Minkowski conventions one has g123 = —%123 = 1, i.e., the spatial components switch
sign when lowering or raising indices. Denoting spatial indices by 4, j, kK and summing
over k, one has

Eijaﬁaabﬁ = é‘ijko (akbo - aobk) = —é‘ijko (akbo - aobk) (C 11)
_ Z-Eijk4 (akb4 - a4bk)E _ (ieijaﬁaabﬁ)E7 .
because e'234 =1 = 1230 and a° = —ia‘%E. Repeating this for rank-1 and rank-3 tensors

results in the identities in Table C.1 (which would also follow from Eq. (C.29) below).

Euclidean Feynman rules. We now drop the index ‘E’ and write all subsequent
formulas in Euclidean space. The FEuclidean action of QCD is

S /d% (D + M)+ Lo Fiv], (C.12)

where D, = 0,,+igA,, (this is consistent with Eq. (2.1.3) because the spatial component
is D =V +igA). As a consequence,
Fu(x) ==0,A, + 0,A, —ig[Au, A)]. (C.13)
The Fourier transform is defined in Euclidean space,
dip .
F(r) = wr R
@) = [ e o).

which would technically lead to i factors in front of the integrals in Minkowski space,
but this can be compensated by removing factors of ¢ from the propagators and vertices

F(p) = /d4:r e~ 7T F(x), (C.14)

in momentum space.
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The resulting Feynman rules are obtained by taking the Feynman rules in Minkowski
space, transforming to Euclidean space, and splitting off a factor ¢ from each 1PI quan-
tity (vertices and inverse propagators). This yields:

m Quark propagator:

_ 1 —ip +mp
S~Yp)y =7, (i S, = " C.15
o (p) P (Zyﬂr mg), o(p) Zy P2+ mQB ( )
» Gluon propagator (we redefine Tp" = 6" — qq"/q* and LY = ¢"q¢" /¢?):
- 1 Z(@A) Ty + LY
(Dg )" (q) = ¢ (ZA T + ng”> , DM(q) = (a°) qu &Ly (C.16)
m Ghost propagator:
1 9 1
Daole) = —Zea”s  Daold) = —5 5 (C.17)
m Quark-gluon vertex:
Iy =igty Zpy" (C.18)
m Ghost-gluon vertex: _
ThhoP) = —igfave Zr p* (C.19)
m Three-gluon vertex:
L5, 0(p1, 2, p3) = 19 fabe Z3g |(p1 — p2)P OM
39,0( ) abc g [( ) (CQO)

+(p2 — p3)" 6" + (p3 — p1)” 6°] .
m Four-gluon vertex:

PZ;,%U = _92249 |: Jave fede (5#/)5”0 - 5l/p5,ucr)
+ facefbde (5#1’500 - 6l/p5ucr) (021)
+ fadefcbe (5/“)5”0 - 5“”(5’)0)} .

The Lorentz-invariant dressing functions are identical except that the arguments pick
up minus signs. This is often indicated by capital letters such as Q? = q% = —qJQW. In
general, if one defines

{817 52, S3, } = {p2E7 (:I%'a PE " 4E, } = {_p?\/lv _q]2\/[7 —PM - 4M, }’ (022)

then the quantities F'(sq1, s2,83,...) are the same in Euclidean and Minkowski space.
Also for this reason it is convenient to break down Lorentz-covariant relations to
Lorentz-invariant relations, because then the transformations from Minkowski to Eu-
clidean space and vice versa become trivial (assuming that the correct integration paths
for loop integrals are chosen such as in Fig. 2.7).



Euclidean formulas. We suppress again the index ‘E’ and collect some useful Fu-
clidean formulas. The -5 matrix is defined by
7P = =yt = —i gHVPT yley Py (C.23)
with €!23% = 1. It is convenient to define the fully antisymmetric combinations of Dirac
matrices by the commutators
[A,B] = AB — BA, (C.24)
[A,B,C]=[A,B|C+[B,C]A+[C,A]B, (C.25)
[A,B,C,D|=[A,B,C1D+[B,C,D|A+[C,D,AlB+[D,A,B]C. (C.26)
Inserting y—matrices, this yields the antisymmetric combinations
[v#, 7] = 5 "8 2P (C.27)
§ 777 = 5 (AP =P ) = 1 {1 = =Py, (C.28)
a1 77570 = =5 e (C.29)

The various contractions of e—tensors are given by
cHVPA By gpex (5Vﬁ 5P — §VY §P8 )+ SHB (6¥7 5P — 5V 6P7)
+ OHY (8PP gV — 5P 5V |
3 AT gOPAT — gha guB _ giB v (C.30)
% hAOT codaT _ e

1 dotw AoTw __
51 € € =1.

The e—tensor satisfies at#c*#7%} = 0, where a* is an arbitrary four-vector and {...}
denotes a symmetrization of indices.

Momentum integrations. Four-momenta are conveniently expressed through hy-

perspherical coordinates:
V1—22,/1—-192sing

V1—224/1—y2 coso

H = 2 . C.31

VP e, (C.31)
z

For a particle in its rest frame, this corresponds to p* = (0,im). (Actually, in Euclidean
space it does not matter where we put the mass since each direction is treated equally.)
A four-momentum integration reads

1

00 1 2
4
/d 4;/dp2p2/d2\/1—22/dy/d¢, (C.32)
0 —1 -1 0

(2m)4

where % dp® p?> = dpp> and

1 1 27
/dQ4 = /dzx/l —z2/dy/d¢: 272 (C.33)
-1 -1 0

is the integral over the unit sphere in four dimensions.



6 Euclidean conventions

Spinors. The positive- and negative-energy onshell spinors for spin-1/2 particles sat-
isfy the Dirac equations

(ip +m) u(p) = 8 = ulp) (ip+m), (C.34)

(ip —m)v(p) = 0=v(p) (ip —m),

where the conjugate spinor is %(p) = u(p)'y%. Since the onshell spinors only depend on
p they are the same as in Minkowski space; for example in the standard representation:

Ep+m fs
us(p) =/ —5, - (,,.T 55) (C.35)

Ep+m

with

£+_<(1)>, g—_<(1)>7 Ep:\/p2+m2'

We have normalized them to unity,

us(p) ug (p) = —0s(p) v (P) = sy

ts(p) vy (P) = Us(p) ug (p) =0, (C.36)

and their completeness relations define the positive- and negative-energy projectors:

> uap) () = 2 A (),
: o (C.37)
S ) talp) = 2 "= a (p).

Therefore, Ay (p) u(p) = u(p) and A_(p) u(p) = 0.



