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4.4 Chiral effective field theories

In the discussion so far we have seen that the information on hadrons that can be easily
and directly extracted from the QCD Lagrangian is limited: some exact statements are
possible, but in practice one needs numerical calculations and/or models to describe
the dynamics of the theory. On the other hand, analytic calculations are still possible
if we exploit the symmetries of QCD. In particular, the near chiral symmetry of the
QCD Lagrangian and its spontaneous breaking can be used to construct low-energy
effective theories of QCD, which are not formulated in terms of quarks and gluons but
rather with hadrons as effective degrees of freedom. The fact that the pion mass is
so much smaller than all other hadronic energy scales makes a perturbative expansion
in powers of momenta and pion masses possible. The resulting field theory is called
chiral perturbation theory (ChPT) and allows one to make rigorous statements
as long as the momenta and pion masses are small.

4.4.1 Sigma model

Linear sigma model. We start with the linear sigma model, which is the prototype
of an effective field theory that implements spontaneous chiral symmetry breaking. In
its basic version it describes the interaction of nucleons with pions and scalar mesons:

� The nucleon is represented by spinor fields ψ(x), ψ(x) which are isospin doublets,
i.e., they transform under the fundamental representation of SU(2)f .

� The three pions correspond to an isospin triplet πa(x) of pseudoscalar fields.

� The scalar meson σ(x) is an isoscalar and identified with the σ/f0(500).

One could extend this by including more meson fields such as the ρ meson or other
baryon fields, and various quark-meson models have been constructed by interpret-
ing the spinors not as nucleons but as quarks.

We combine the pions and the scalar meson into a meson matrix φ, which is a
matrix in Dirac and flavor space and depends linearly on πa and σ:

φ = σ + iγ5 τ · π . (4.4.1)

Here, τa are the Pauli matrices which are related to the SU(2)f generators by ta = τa/2.
We defined the ‘length’ of φ that will enter in the mass term by

|φ|2 := 1
2 Tr

{
φ†φ
}

= 1
2 Tr

{
(σ − iγ5 τ · π)(σ + iγ5 τ · π)

}
= σ2 + π2 , (4.4.2)

where we used the identities (same indices are summed over)

(τ · π)2 = πa πb
(

1
2 [τa, τb]︸ ︷︷ ︸
ifabc τc

+ 1
2{τa, τb}︸ ︷︷ ︸

δab

)
= π2 , Tr

{
τa τb} = 2δab (4.4.3)

with fabc = εabc in SU(2). Likewise, for the kinetic term we have

|∂µφ|2 = 1
2 Tr

{
∂µφ

† ∂µφ
}

= (∂µ σ)2 + (∂µ π)2 . (4.4.4)
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Fig. 4.10: Field content of the sigma model before (left) and after (right) spontaneous chiral
symmetry breaking.

The Lagrangian then reads as follows:

L = ψ (i/∂ − g φ)ψ + 1
2

(
|∂µφ|2 −m2|φ|2

)
− V (|φ|2) , (4.4.5)

where the meson matrix couples to the spinors through a Yukawa interaction ψ φψ.
We have assigned the same mass m to each meson, whereas the nucleon at this point is
massless. The potential V depends on powers of the meson matrix and we will specify
it below. For four-point interactions, the field content of this theory is shown in the
left panel of Fig. 4.10.

Let us impose chiral symmetry SU(2)V × SU(2)A on the Lagrangian, where the
fermions transform under Eqs. (3.1.18–3.1.19):

V : U = exp
(
iεa

τa
2

)
⇒ U ′ = Uψ , ψ′ = ψ U † , (4.4.6)

A : U = exp
(
iγ5 εa

τa
2

)
⇒ U ′ = Uψ , ψ′ = ψ U . (4.4.7)

The fermion kinetic term is invariant under both operations, i.e., chirally symmetric:

(ψ i/∂ ψ)′ =

{
ψ U †i/∂ Uψ . . . V

ψ Ui/∂ Uψ . . . A

}
= ψ i/∂ U †Uψ = ψ i/∂ ψ . (4.4.8)

We have not yet defined how the meson fields transform under chiral symmetry. To do
so, we impose invariance of the meson-fermion coupling term ψ φψ:

V : (ψ φψ)′ = ψ U †φ′ Uψ
!

= ψ φψ ⇒ φ′ = UφU † , (4.4.9)

A : (ψ φψ)′ = ψ Uφ′ Uψ
!

= ψ φψ ⇒ φ′ = U †φU † . (4.4.10)

The infinitesimal transformations for the πa and σ fields then become

V : σ′ = σ , π′a = πa − fabc εb πc , (4.4.11)

A : σ′ = σ + εa πa , π′a = πa − εa σ . (4.4.12)

Observe that the SU(2)A transformation mixes the σ with the pion fields! This is why
they belong together and we needed both of them in constructing a chirally invariant
Lagrangian.
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From the transformation behavior of the meson matrix φ it is clear that the remain-
ing terms in the Lagrangian |φ|2 = 1

2 Tr
{
φ†φ
}

, |∂µφ|2 and V (|φ|2) are also chirally
invariant. For the individual fields this entails

V : σ′
2

= σ2 , π′
2

= π2 + 2fabc πa πb εc = π2 , (4.4.13)

A : σ′
2

= σ2 + 2σπa εa , π′
2

= π2 − 2σπa εa . (4.4.14)

While SU(2)V leaves both σ2 and π2 invariant, SU(2)A only preserves their combi-
nation σ2 + π2. Moreover, renormalizability entails that the possible self-interactions
in the potential V (|φ|2) can be of order four at most, since the couplings for higher
interactions would have a negative mass dimension. A |φ|4 interaction then leads to
the quartic interaction vertices shown in Fig. 4.10.

In this initial Lagrangian, chiral symmetry demands that both mesons must have
the same mass m and coupling strength g. Recalling Eq. (3.1.49), we deliberately did
not include a mass term for the nucleon since it would break chiral symmetry. Below
we will generate a nucleon mass and eliminate the pion mass by means of spontaneous
chiral symmetry breaking.

The vector and axialvector currents corresponding to the SU(2)V and SU(2)A
symmetries can be derived from their definition in (3.1.2). They pick up additional
terms from the meson fields σ and πa:

V µ
a = ψ γµ ta ψ + fabc πb ∂

µπc , Aµa = ψ γµγ5 ta ψ + σ ∂µπa − πa ∂µσ . (4.4.15)

These currents are conserved because the Lagrangian is chirally invariant. The classical
equations of motion of the linear sigma model are

/∂ ψ = −ig φψ ,
ψ
←−
/∂ = ig ψ φ ,

(2 +m2)σ = −g ψ ψ ,
(2 +m2)πa = −2ig ψ γ5 ta ψ ,

(4.4.16)

up to terms coming from the potential V (|φ|2).

We note that one could rewrite the linear sigma model in terms of a meson matrix Σ which is a
matrix in flavor space only:

Σ := σ + iτ · π . (4.4.17)

Employing the chiral projectors P± = (1± γ5)/2 from Eq. (3.1.42), we have

φ = σ + iγ5 τ · π = (P+ + P−)σ + (P+ − P−) iτ · π
= P+ (σ + iτ · π) + P− (σ − iτ · π)

= P+Σ + P−Σ† = P+ΣP+ + P−Σ† P− .

(4.4.18)

With the definition (3.1.43) of the right- and left-handed spinors, ψω = Pω ψ and ψω = ψ P−ω, the
Yukawa coupling becomes

ψ φψ = ψ−Σψ+ + ψ+Σ†ψ− . (4.4.19)

The remaining terms, defined via (4.4.2), have the same form as before:

|φ|2 = |Σ|2 , |∂µφ|2 = |∂µΣ|2 . (4.4.20)

With the transformation of the chiral spinors in Eq. (3.1.46), ψ′ω = Uω ψω and ψ′ω = ψω U
†
ω, chiral

symmetry demands

ψ′− Σ′ ψ′+ + ψ′+ Σ′
†
ψ′− = ψ− U

†
−Σ′ U+ψ+ + ψ+ U

†
+Σ′

†
U−ψ−

!
= ψ−Σψ+ + ψ+Σ†ψ− , (4.4.21)

hence the matrix Σ must transforms under SU(2)L × SU(2)R as Σ′ = U−ΣU†+.
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Fig. 4.11: Mexican hat potential of Eq. (4.4.22), with minima along the chiral circle. The
right figure includes the explicit symmetry-breaking term of Eq. (4.4.29).

Spontaneous chiral symmetry breaking. Next, we want to generate a mass for
the fermions and also get rid of the pion mass. To this end we drop the identification
of m with the masses of σ and π. Instead we interpret it as a scale Λ via −m2 =: λΛ2

that we absorb into the potential:

V (|φ|2) =
λ

4
|φ|4 − λΛ2

2
|φ|2 =

λ

4

(
|φ|2 − Λ2

)2 − λ

4
Λ4 . (4.4.22)

Constant terms can always be dropped from the Lagrangian. The remainder is the
mexican hat potential shown in Fig. 4.11, which has minima along the ‘chiral circle’
|φ|2 = σ2 + π2 = Λ2. Note that this is still a chirally symmetric condition and the
Lagrangian is invariant under chiral symmetry as before.

However, in this way we have prepared the groundwork that triggers a spontaneous
symmetry breaking (SSB) in the quantum field theory. Recall the discussion of the
quantum effective action Γ[ϕ] and the classical field ϕ(x) = 〈φ(x)〉J around Eq. (2.2.42).
If we set the sources J = 0, then also ϕ(x) = 0. The first derivative of Γ[ϕ] vanishes
and the higher derivatives are the 1PI correlation functions for the field φ(x):

δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ=0

= 0 ,
δnΓ[ϕ]

δϕ(x1) · · · δϕ(xn)

∣∣∣∣
ϕ=0

= Γ
(n)
φ (x1, . . . xn) . (4.4.23)

In the presence of a non-zero vacuum expectation value, setting J = 0 entails ϕ(x) = v
and these relations are modified as follows:

δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ=v

= 0 ,
δnΓ[ϕ]

δϕ(x1) · · · δϕ(xn)

∣∣∣∣
ϕ=v

= Γ
(n)
φ−v(x1, . . . xn) . (4.4.24)

The higher derivatives are the 1PI correlation functions for the field φ(x) − v and
the ‘one-point function’ still vanishes for ϕ(x) = v, which therefore extremizes the
effective action. Since the classical potential gives the tree-level contribution to Γ[ϕ],
its minimum determines the leading-order result for the VEV.

Then again, the minimum of the mexican hat is still a chirally symmetric condition.
What actually breaks the chiral symmetry of the vacuum is parity invariance, which
entails 〈0|πa|0〉 = 0 and leaves only σ0 = 〈0|σ|0〉 = ±Λ, i.e., it singles out two points on
the chiral circle. To determine the true ground state, one must introduce an explicit
symmetry-breaking term that tilts the potential towards one absolute minimum.
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The next step is to expand the σ field around its minimum by introducing a new
fluctuating field s. There are different ways to do so; one possible choice is σ = Λ + s.
Since Λ is a constant, we have ∂µσ = ∂µs and the form of the kinetic term for the
mesons remains unchanged:

1

2
|∂µφ|2 =

1

2

(
(∂µσ)2 + (∂µπ)2

) ∼= −1

2
(s2 s+ π2π) . (4.4.25)

Instead, the potential becomes

V (|φ|2) =
λ

4

(
|φ|2 − Λ2

)2
=
λ

4

(
(Λ + s)2 + π2 − Λ2

)2
=
λ

4

(
s2 + π2 + 2Λs

)2

= λ

[
1

4
(s2 + π2)2 + Λs (s2 + π2) + Λ2 s2

]
.

(4.4.26)

Expressed in terms of s and π, the Lagrangian (4.4.5) reads explicitly:

L = ψ (i/∂ − gΛ)ψ − gψ (s+ iγ5 τ · π)ψ

− 1

2
s (2 + 2λΛ2) s− 1

2
π2π − λΛ (s3 + sπ2)− λ

4
(s4 + 2s2π2 + π4) .

(4.4.27)

In this way we have generated a nucleon mass M , a scalar mass mσ, and two new
cubic interaction vertices ∼ s3 and ∼ sπ2 (see right panel of Fig. 4.10):

M = gΛ, mσ =
√

2λΛ, gsss = gππs = λΛ. (4.4.28)

The pions remain massless, hence they are the three Goldstone bosons of the sponta-
neously broken SU(2)A. Observe that since we only redefined the fields, the Lagrangian
is still the same as before and therefore chirally invariant (despite the fermion mass
term!). The symmetry is merely ‘hidden’. However, the ground state is not invariant
and thus chiral symmetry is spontaneously broken in the QFT.

Explicit chiral symmetry breaking. Since the pions in nature have a mass, we can
add a term to the Lagrangian that breaks chiral symmetry explicitly,

V ′ = V −m2
π Λσ ⇔ L′ = L+m2

π Λσ , (4.4.29)

where we already named the coefficient accordingly. The potential is now tilted, and
the absolute minimum appears at

∂V ′

∂σ

∣∣∣∣
σ=σ0,
πa=0

!
= 0 ⇒ λ (σ2

0−Λ2) = m2
π

Λ

σ0
≈ m2

π ⇒ σ0 = +

√
Λ2 +

m2
π

λ
. (4.4.30)

If we expand around the new minimum and insert σ = σ0+s into the potential (4.4.22),
we generate a mass term ∼ −1

2 m
2
π π

2 for the pion. The remaining Lagrangian has the
same form as in Eq. (4.4.27) at first order in m2

π, but instead of the relations (4.4.28)
we find:

M = g

√
Λ2 +

m2
π

λ
, mσ =

√
2λ

√
Λ2 +

3m2
π

2λ
, gsss = gππs = λ

√
Λ2 +

m2
π

λ
.

(4.4.31)
The resulting evolution of the nucleon mass with m2

π already resembles the outcome of
realistic calculations in QCD, which we sketched earlier in Fig. 4.7. In the linear sigma
model, the nucleon mass in the chiral limit is gΛ.
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Non-linear representations. The linear sigma model needs both pions and a scalar
field to respect chiral symmetry. This is not very satisfactory because the actual
σ/f0(500) is a broad resonance and it seems unnatural that it would play the fun-
damental role suggested by the linear sigma model. While we cannot simply set s = 0
in the way we introduced it above (σ = Λ + s) without breaking the chiral symmetry
of the Lagrangian, we can eliminate the σ meson by allowing the meson matrix to be
nonlinear in the pion fields.

Let us introduce a new scalar field s and new pion fields ϕa by

φ = (Λ + s) Ω , Ω = exp

(
iγ5 τ ·ϕ

α(z)

Λz

)
= cosα(z) + iγ5 τ ·ϕ

sinα(z)

Λz
. (4.4.32)

Here we defined

(τ ·ϕ)2 = ϕ2 = Λ2z2 , (4.4.33)

where z is the dimensionless ‘length’ of the pion field, α(z) is some function of z, and
we used eiAα = cosα+ iA sinα for A2 = 1. As a consequence, the original fields σ and
πa are related to the new ones by

σ = (Λ + s) cosα(z) , πa = (Λ + s)
ϕa
Λz

sinα(z) . (4.4.34)

The advantage of doing this is that Ω depends only on the new pion fields (but on
all powers of them), and because of |φ|2 = (Λ + s)2 the potential depends only on the
scalar field:

V (|φ|2) =
λ

4

(
|φ|2 − Λ2

)2
= λ

(
s4

4
+ Λs3 + Λ2s2

)
. (4.4.35)

Because |φ|2 is chirally symmetric, in this way we have achieved a chirally symmetric
separation of the scalar and pion fields. In turn, the kinetic term for the mesons
becomes more complicated and also encodes the pion’s self-interactions via derivative
couplings. With ∂µφ = ∂µsΩ + (Λ + s) ∂µΩ we find

|∂µφ|2 = 1
2 Tr

{
∂µφ

† ∂µφ
}

= 1
2 Tr

{
∂µs ∂

µs+ (Λ + s) ∂µs
(
∂µΩ†Ω + Ω† ∂µΩ

)

︸ ︷︷ ︸
∂µ (Ω†Ω)=0

+(Λ + s)2 ∂µΩ† ∂µΩ
}

= (∂µs)
2 + (Λ + s)2 |∂µΩ|2 ,

where |∂µΩ|2 is a complicated function of the pion fields. The explicit calculation yields

|∂µΩ|2 =
1

z2

[
(∂µϕ)2

Λ2
sin2 α+

(ϕ · ∂µϕ)2

Λ4

(
α′(z)2 − sin2 α

z2

)]
. (4.4.36)

Depending on the function α(z), we could work with the

� exponential representation: α(z) = z ⇒ Ω = exp
(
iγ5

τ ·ϕ
Λ

)
,

� square-root representation: sinα(z) = z ⇒ Ω =
√

1− z2 + iγ5
τ ·ϕ
Λ .
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In any case, the Lagrangian in terms of the new fields becomes

L = ψ
(
i/∂ − g (Λ + s) Ω

)
ψ − 1

2
s (2 + 2λΛ2) s− λ

(
s4

4
+ Λs3

)
+

1

2
(Λ + s)2 |∂µΩ|2.

Diagrammatically it still contains the Feynman rules from the right panel of Fig. 4.10,
with the identifications in Eq. (4.4.28), but due to the appearance of Ω there are new
vertices with pion legs: in fact, once we expand the exponential, there are infinitely
many of them! While this looks very different from the Lagrangians (4.4.5) or (4.4.27),
in principle it is still the same theory since all we have done is renaming the fields.
Indeed one can show that onshell scattering amplitudes obtained from either of these
representations are identical.

Non-linear sigma model. The main advantage of arranging the fields in this way is
the following: because we separated the fields s and ϕa in a chirally invariant manner,
setting s = 0 does no longer break chiral symmetry and we can safely eliminate it from
the theory. The resulting Lagrangian is

L = LN + Lπ = ψ
(
i/∂ − gΛ Ω

)
ψ +

Λ2

2
|∂µΩ|2 (4.4.37)

and contains nucleons and pions only. The pionic part Lπ, where the self-interactions
of the pions enter via derivative couplings, is called nonlinear sigma model. Note
that we could have also obtained it by setting σ2 + π2 = Λ2 from the beginning, i.e.,
by restricting the fields to the chiral circle and thereby eliminating the σ field as an
independent degree of freedom.

Unfortunately, the chirally invariant separation of scalar and pion fields comes at a
price, namely the loss of renormalizability. The reason is that Ω and |∂µΩ|2 contain
all powers of the pion field ϕa. Suppose we work with the exponential representation
α(z) = z:

|∂µΩ|2 =
1

z2

[
(∂µϕ)2

Λ2
sin2 z +

(ϕ · ∂µϕ)2

Λ4

(
1− sin2 z

z2

)]
. (4.4.38)

The Taylor expansion of (sin z/z)2 gives

sin2 z

z2
= 1− z2

3
+

2z4

45
+ · · · = 1− z2

∞∑

r=0

cr z
2r , (4.4.39)

so that Lπ becomes

Lπ =
1

2
(∂µϕ)2 +

1

2

(
(ϕ · ∂µϕ)2 −ϕ2 (∂µϕ)2

) ∞∑

r=0

cr
(Λ2)r+1

(ϕ2)r . (4.4.40)

The first term is the inverse tree-level propagator. The second contains an infinite
number of tree-level vertices with even numbers of pion legs and derivative couplings
(Fig. 4.12): The term with r = 0 returns a four-point vertex with coupling constant
c0/Λ

2, the term with r = 1 a six-point vertex with coupling constant c1/Λ
4, and so on.

As a result, the perturbative expansion of an n-point function not only contains in-
finitely many loop diagrams but also depends on infinitely many vertices.
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Fig. 4.12: Tree-level diagrams contained in the Lagrangians (4.4.37) and (4.4.64).

Even worse, the couplings carry negative mass dimensions and therefore these in-
teractions are non-renormalizable. Because we deleted the field s, the non-linear sigma
model is no longer equivalent to the original Lagrangian, which was renormalizable
even though in the end this was no longer obvious (still, we could have transformed
back to the original fields σ and πa). In practice this means that each n-point func-
tion produces new divergences, so we would also need infinitely many renormalization
conditions and the theory loses its predictivity.

While this would make practical applications hopeless, the fact that all couplings
contain derivatives opens up a new interpretation: derivatives become momenta in
momentum space, and higher powers of momenta are suppressed at low energies. If we
can show that higher-loop diagrams also correlate with higher momentum powers, then
we can stop the expansion at some given order and fix the necessary renormalization
constants at that order by outside information, e.g., from experimental data. The
convergence radius is then limited to low momenta and low energies; hence, we can
interpret the model as a low-energy effective theory. In fact, the nonlinear sigma
model Lπ constitutes the lowest-order term in chiral perturbation theory.

Weinberg’s power counting. For illustration, let us go back to a φp theory, where
we add up the φp couplings in the Lagrangian:

L = Lkin + λ4 φ
4 +

λ6

Λ2
φ6 +

λ8

Λ4
φ8 . . . (4.4.41)

Because the non-renormalizable couplings for p > 4 carry negative mass dimensions,
we pulled out powers of a scale Λ so that the λp are dimensionless. In this case the
formula (2.3.62) which we established earlier generalizes to

[Γn] = 4L− 2I +
∑

p

(4− p)Vp ,
∑

p

Vp = V . (4.4.42)

Here, [Γn] is the mass dimension of a given n-point function. For some perturbative loop
diagram that contributes to Γn, L is the number of loops, I the number of propagators
and Vp the number of φp vertices, with V the total number of vertices in the diagram.
D = 4L− 2I is the degree of divergence of the diagram.

Now observe that in order to preserve the mass dimension of the n-point function,
internal momentum powers in a loop must translate to powers of the external momenta
and masses. This is easiest to see in dimensional regularization from the loop formulas
(2.3.40–2.3.41):

I(4)
nm =

∫
d4lE
(2π)4

(l2E)m

(l2E + ∆)n
∝ ∆2+m−n , (4.4.43)
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Fig. 4.13: Loop diagrams contributing to a 1PI four-point function with four- and six-point
interactions. The degree of divergence D for ordinary couplings with dχ = 0 is given in bold
black font and the one for derivative couplings with dχ = 2 in red, cf. Eq. (4.4.48).

where the quantity ∆ defined in Eq. (2.3.32) has mass dimension two and depends
on the external momenta and the masses in the loop. It is attached to an expression
that contains divergent 1/ε terms and finite parts, where the former drop out after
renormalization. The renormalization scale M (or µ) only enters through logarithms.
Likewise, had we employed a cutoff regulator, the divergent terms would scale with
powers of the cutoff and drop out after renormalization, whereas the finite pieces scale
with powers of the external momenta and the masses.

If a diagram contains higher φp vertices, its degree of divergence D raises according
to Eq. (4.4.42):

D = [Γn] +
∑

p

(p− 4)Vp . (4.4.44)

The reason is that those vertices come with higher powers of Λ2 in the denominators,
which must be compensated by momentum powers in the numerators to preserve the
mass dimension in the n-point function; these make the diagrams more divergent.
However, in this way D = 4L − 2I not only counts the degree of divergence, but also
the powers in the external momenta and masses. As long as the momenta and
masses are small, diagrams with higher D (i.e., higher loop diagrams) will be more and
more suppressed. If we supply enough renormalization conditions at a given order D to
remove the infinities, we can stop the perturbative expansion after a few terms. Thus,
non-renormalizable theories can be viewed as low-energy effective field theories.

The situation is illustrated in Fig. 4.13, which collects the lowest perturbative loop
diagrams contributing to a four-point function with φ4 and φ6 vertices. In the horizontal
direction we increase V4, the number of vertices corresponding to the renormalizable
φ4 interaction, which does not increase D. In the vertical direction we increase the
number of vertices V6 of the non-renormalizable φ6 interaction. Each subsequent row
increases D by two, so its diagrams are suppressed by a power of two at small momenta
and masses compared to those in the previous row.
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On the other hand, there is no suppression in the horizontal direction where D does
not change; here we would need to rely on the smallness of λ4 to stop the series. This is
where derivative couplings come in. The nonlinear sigma model in (4.4.40) contains
ϕp interactions (p = 4 + 2r) with derivatives, which become powers of momenta lµ in
momentum space. The generic structure of the ϕp couplings is

p = 4 :
l2

Λ2
, p = 6 :

l2

Λ4
, p = 8 :

l2

Λ6
, etc. (4.4.45)

Each vertex in the nonlinear sigma model has two powers of derivatives, which we
denote by dχ = 2. In principle we could construct theories with higher powers of
derivatives, e.g. dχ = 4; in that case, the couplings would have the form

p = 4 :
l4

Λ4
, p = 6 :

l4

Λ6
, p = 8 :

l4

Λ8
, etc. (4.4.46)

Eq. (4.4.42) still holds for derivative couplings since the mass dimensions of the ϕp

couplings are still 4 − p. However, they are now the differences stemming from the
numerators with momentum powers dχ and denominators with powers of Λ2, where
the former contribute to the degree of divergence D. If we split 4−p = dχ−(dχ+p−4),
then for a theory with fixed dχ we have

∑

p

(4− p)Vp =
∑

p

[dχ − (. . . )]Vp = dχV − (. . . ) , (4.4.47)

where the rest does not contribute to D but only to the mass dimension [Γn]. Therefore
we arrive at

D = 4L− 2I + dχV, (4.4.48)

which counts the powers in the external momenta and masses.
If we now go back to Fig. 4.13 and interpret the φ4 and φ6 interactions as derivative

couplings with dχ = 2 like in the nonlinear sigma model, we see that D not only
increases vertically but also horizontally. Then up to D = 4, for instance, we only need
to keep a small number of diagrams. The same diagrams in a theory with dχ = 4 would
carry even larger D. For a general theory containing couplings with any possible dχ,
Eq. (4.4.48) generalizes to

D = 4L− 2I +
∑

dχ

dχV
(dχ) ,

∑

dχ

V (dχ) = V, (4.4.49)

where V (dχ) is the number of vertices in a diagram from a given order in dχ. In this
way, D tells us where to stop the perturbative expansion: diagrams with higher D
become less and less important at low momenta and small masses. The assumption of
‘small masses’ is justified since the propagators in the loops are pions and their masses
are indeed small.

We finally note that the three quantities L, I and V are not independent but related
by L+ V = I + 1. Thus we could substitute I and write Eq. (4.4.48) as

D = 2 + 2L+ (dχ − 2)V, (4.4.50)

which shows directly that D grows with the number of loops and vertices.
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Fermion Lagrangian. We have not yet addressed the fermionic part

LN = ψ
(
i/∂ − gΛ Ω

)
ψ (4.4.51)

of the Lagrangian (4.4.37), which contains the nucleon mass term through a complicated
dependence on the pion fields encoded in Ω. In analogy to Eq. (4.4.18), we rewrite the
Dirac-flavor matrix Ω in terms of

Σ = exp
(
i
τ ·ϕ

Λ

)
= cos z + iτ ·ϕ sin z

Λz
, (4.4.52)

which is a matrix in SU(2) flavor space only. Here we used the exponential representa-
tion α(z) = z. If we use the chiral projectors Pω and the right- and left-handed spinors
ψω, ψω, with ω = ±, and follow the same steps as in (4.4.18) and below, we find

Ω = P+ΣP+ + P−Σ† P− ⇒ ψΩψ = ψ−Σψ+ + ψ+ Σ† ψ− (4.4.53)

as well as
|∂µΩ|2 = |∂µΣ|2 = 1

2 Tr
{
∂µΣ† ∂µΣ

}
. (4.4.54)

The chiral invariance of LN implies the following transformation behavior under the
group SU(2)L × SU(2)R, where U− and U+ are left- and right-handed transformation
matrices with independent group parameters:

Σ′ = U−ΣU †+ . (4.4.55)

Note that in the literature it is common to write

ψ− = ψL , ψ+ = ψR , U− = L , U+ = R , Σ = U . (4.4.56)

Next, we redefine the fermion fields such that ψΩψ becomes a simple mass term.
To do so, we introduce the SU(2) matrices

ξ±(x) = exp
(
±iτ ·ϕ

2Λ

)
⇒ ξ†ω = ξ−ω , Σ = ξ+ξ+ , Σ† = ξ−ξ− , (4.4.57)

and insertion in Eq. (4.4.53) yields

Ω =
∑

ω

Pω ξω ξω Pω ⇒ ψΩψ =
∑

ω

ψ−ω ξω ξω ψω . (4.4.58)

Defining the spinors

Ψω = ξω ψω = ξω Pω ψ ,

Ψω = ψω ξ−ω = ψ P−ω ξ−ω ,
Ψ =

∑

ω

Ψω ⇒
Ψω = Pω Ψ ,

Ψω = ΨP−ω ,
(4.4.59)

we arrive at

ψΩψ =
∑

ω

Ψ−ω Ψω = Ψ
∑

ω

P2
ω Ψ = Ψ

∑

ω

Pω Ψ = Ψ Ψ . (4.4.60)
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In turn, the kinetic term ψ i/∂ ψ becomes more complicated:

ψ i/∂ ψ =
∑

ω

ψω i/∂ ψω =
∑

ω

Ψω ξω i/∂ ξ−ω Ψω = Ψ
(∑

ω

ξω i/∂ ξ−ω Pω
)

Ψ

= Ψ
(
i/∂ +

∑

ω

iξω (/∂ξ−ω)Pω
)

Ψ = Ψ
(
i/∂ + /v + /aγ5

)
Ψ.

(4.4.61)

In the last step we introduced the vector and axialvector fields

vµ =
i

2
[ξ+, ∂

µξ−] =
i

2
(ξ+ ∂

µξ− + ξ− ∂
µξ+) ,

aµ =
i

2
{ξ+, ∂

µξ−} =
i

2
(ξ+ ∂

µξ− − ξ− ∂µξ+) ,

(4.4.62)

where we used ∂µ (ξ−ξ+) = 0. Their combination gives

/v + /aγ5 = i
(
ξ+ /∂ξ− P+ + ξ− /∂ξ+ P−

)
, (4.4.63)

which is the combination that appears in Eq. (4.4.61).
Putting everything together, the Lagrangian (4.4.37) takes the form

L = LN + Lπ = Ψ
(
i/∂ + /v + /aγ5 −M

)
Ψ +

Λ2

4
Tr
{
∂µΣ† ∂µΣ

}
, (4.4.64)

where the nucleon mass is M = gΛ and the original Yukawa couplings between the
nucleon and the pion have turned into vector and axialvector couplings. Expanding vµ

and aµ in the lowest powers of the pion fields, we obtain

vµ = − 1

4Λ2
τ · (ϕ× ∂µϕ) + . . . , aµ =

1

2Λ
τ · ∂µϕ+ . . . . (4.4.65)

The axialvector coupling of the pion to the nucleon induced by aµ corresponds to the
second diagram in Fig. 4.12. The third diagram is the Weinberg-Tomozawa term
stemming from vµ, a seagull-like contact interaction between two pions and the nucleon
which gives the dominant tree-level contribution to Nπ scattering.

Moreover, with Σ = ξ+ξ+ it follows that the transformation behavior Σ′ = U−ΣU †+
is satisfied if ξ+ transforms like

ξ′+ = U−ξ+K
† ≡ K ξ+ U

†
+ ⇒ ξ′− = U+ξ−K

† = K ξ− U
†
− , (4.4.66)

where K is a unitary SU(2) matrix which depends on U+, U− but also on the pion
fields ϕa themselves which carry a dependence on x. As a result, we find

Ψ′ω = K Ψω , Ψ′ = K Ψ ,
v′µ = KvµK

† + iK(∂µK
†) ,

a′µ = KaµK
† .

(4.4.67)

If we define the chiral covariant derivative by Dµ = ∂µ − ivµ, the comparison with
Eq. (2.1.5) shows that the transformation of vµ is that of a vector field under a local
symmetry. In other words, instead of a global invariance with respect to U+ and U−,
chiral symmetry has turned into a local invariance under a transformation with K.
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Explicit symmetry breaking. In order to make contact with QCD, we add the
following term to the Lagrangian of the nonlinear sigma model:

L = LN + Lπ + Lsb , Lsb =
bΛ3

2
Tr
(
MΣ† + ΣM†

)
. (4.4.68)

It depends on the two-flavor quark mass matrix M from Eq. (3.1.15), and b is a di-
mensionless parameter. We can compare this to LQCD|massless − ψMψ based on the
following arguments:

� Lsb has mass dimension four and is linear in the quark mass matrix.

� Lsb breaks chiral symmetry explicitly. To see this, consider equal quark masses
M = m1; then from Σ′ = U−ΣU †+ we have

Tr
(

Σ′
†

+ Σ′
)

= Tr
(
U+ΣU †− + U−ΣU †+

)
. (4.4.69)

Recall from Eq. (3.1.44) that a SU(2)V transformation implies ε+ = ε− and thus

U+ = U−, whereas a SU(2)A transformation implies ε+ = −ε− and U+ = U †−.
Therefore, Lsb is still invariant under isospin symmetry SU(2)V but it breaks
SU(2)A, as does the mass term in the QCD Lagrangian.

� Eq. (4.4.52) tells us that

Σ + Σ† = 2 cos z = 2 cos
ϕ2

Λ2
= 2

[
1− ϕ2

2Λ2
+ . . .

]
, (4.4.70)

and because M = M† we find

Lsb = bΛ3 (mu +md)

[
1− ϕ2

2Λ2
+ . . .

]
= −1

2
bΛ (mu +md)ϕ

2 + . . . (4.4.71)

Hence we can identify the pion mass from m2
π = bΛ (mu +md).

� From the mass term in the QCD Lagrangian we can infer the VEV of the Hamil-
tonian density

〈HQCD〉 = 〈ψMψ〉 = mu 〈ūu〉+md 〈d̄d〉 , (4.4.72)

from where we obtain the quark condensate by taking the derivative of 〈HQCD〉
with respect to any of the quark masses and setting mq = 0. Comparison with
the effective Hamiltonian at vanishing meson fields (Σ = 1) yields

〈Hsb〉 = −bΛ3 (mu +md) ⇒ −bΛ3 = 〈ūu〉 = 〈d̄d〉 , (4.4.73)

which suggests the identification of b with the dimensionless quark condensate.
Comparing this with m2

π from above, we arrive at

Λ2m2
π = −mu +md

2
〈ūu+ d̄d〉 , (4.4.74)

which is identical to the GMOR relation (4.2.41) if we identify the scale Λ with
the chiral-limit pion decay constant fπ.
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We can establish more analogies if we derive the vector and axialvector currents
and their divergences. Usually we would do this via Eq. (3.1.2) by taking the derivative
of the Lagrangian with respect to the derivative of the fields. However, this can become
cumbersome if L depends on the fields in a complicated way. A simpler method is to
consider the variation of the (globally invariant) action under a local gauge transfor-
mation, and evaluate it for the solutions of the classical equations of motion:

δS = −
∫
d4x ∂µ

∑

a

εa j
µ
a = −

∫
d4x

∑

a

(∂µεa j
µ
a + εa ∂µj

µ
a ) . (4.4.75)

The variation is then no longer zero because the Lagrangian is not locally invariant,
i.e., the surface term is nonvanishing. On the other hand, in this way we can read off
both the currents and their divergences (which vanish if the global symmetry is intact)
as the coefficients of ∂µεa and εa.

To compute the variation of the Lagrangian Lπ = Λ2

4 Tr
{
∂µΣ† ∂µΣ

}
, we work out

the infinitesimal transformation of the meson matrix Σ,

Σ′ = U−ΣU †+ = (1 + iε−) Σ (1− iε+) = 1 + iε−Σ− iΣ ε+

= 1 + i[εV ,Σ]− i{εA,Σ} = 1 + δΣ ,
(4.4.76)

where we used the infinitesimal relation ε± = εV ± εA from Eq. (3.1.44). After some
algebra, the currents can be read off from the coefficients of ∂µε

a
V and ∂µε

a
A in δS:

V µ
a = −i Λ2

4
Tr
(
τa

[
Σ, ∂µΣ†

])
= εabc ϕb ∂

µϕc + . . . ,

Aµa = i
Λ2

4
Tr
(
τa

{
Σ, ∂µΣ†

})
= Λ ∂µϕa + . . .

(4.4.77)

Vice versa, the coefficients of εaV and εaA vanish and therefore the currents are conserved:
∂µV

µ
a = ∂µA

µ
a = 0.

On the other hand, the variation of the symmetry-breaking mass term Lsb is

δΣ + δΣ† = i
[
εV ,Σ + Σ†

]
− i
{
εA,Σ− Σ†

}
=

2

Λ

∑

a

εaA ϕa + . . .

⇒ δLsb =
∑

a

εaA bΛ2 (mu +md)ϕa ,
(4.4.78)

in which case the divergences of the currents become

∂µV
µ
a = 0 , ∂µA

µ
a = −bΛ2 (mu +md)ϕa = −Λm2

π ϕa . (4.4.79)

This is the analogue of the PCAC relation (3.1.39). If we take the divergence of the
current in Eq. (4.4.77), we get back the classical equation of motion for the pion field,
the Klein-Gordon equation:

∂µA
µ
a = Λ 2ϕa = −Λm2

π ϕa ⇒ (2 +m2
π)ϕa = 0 . (4.4.80)
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4.4.2 Chiral perturbation theory

The approach developed so far looks promising, but it is also not quite satisfactory:
We have eliminated the scalar meson in the linear sigma model at the price of a non-
renormalizable low-energy effective theory. How is this better than the original ap-
proach? After all, it is still just a model that contains certain chosen interactions.

The idea of chiral perturbation theory (ChPT), formulated by Weinberg and
then applied by Gasser and Leutwyler, is the following: we do not know the under-
lying microscopic interactions that constitute hadronic n−point functions, so instead
of providing a specific model for them (like the linear or nonlinear sigma model) we
write down a systematic expansion in all possible terms that are compatible with the
symmetries of QCD. The resulting theory is an effective theory formulated in terms of
nucleons and pions, and eventually also other SU(3) multiplet members, but since it
contains all possible interactions it is a low-energy expansion of QCD.

This theory is non-renormalizable and the resulting Lagrangian will contain infinitely
many terms with infinitely many free parameters. However, this is not a serious issue as
long as we stick to the lowest orders in the expansion in derivatives and pion masses (i.e.,
we work at small momenta and close to the chiral limit). If we can fix a small number
of unknown parameters — the low-energy constants (LECs) — from experiment
or lattice QCD, we should be able to make a range of predictions already at tree level
or at a low loop orders, e.g. for ππ or Nπ scattering amplitudes, electromagnetic and
weak interaction processes, etc.

With the meson matrix Σ = eiτ ·ϕ/Λ, the quark mass matrix M and the scale Λ
(identified with the chiral-limit pion decay constant fπ) as building blocks, we can or-
ganize the infinitely many possible terms in the Lagrangian by their number of deriva-
tives and powers of pion masses. Because of Lorentz invariance, each term in the
Lagrangian must contain an even number dχ = 2, 4, 6, . . . of derivatives, and there can
be no derivative-free term because Tr {Σ†Σ} is a constant. We can then write

L =
∑

dχ

L(dχ) = L(2) + L(4) + L(6) + . . . (4.4.81)

Because each derivative translates to a factor of momentum when taking matrix el-
ements, low orders in derivatives correspond to small momenta and larger-derivative
terms only have a small effect. On the other hand, each instance of the mass matrix
M becomes a factor ∝ m2

π, as we saw for the lowest-order term in Eq. (4.4.71), and
therefore also enters at order dχ = 2. The lowest-order terms are then given by

• L(2) : Tr {∂µΣ† ∂µΣ}, Tr {MΣ† + ΣM†}

• L(4) :
(
Tr {∂µΣ† ∂µΣ}

)2
, Tr {∂µΣ† ∂νΣ}Tr {∂µΣ† ∂νΣ} ,

Tr {∂µΣ† ∂νΣ}Tr {MΣ† + ΣM†} ,
(
Tr {MΣ† ± ΣM†}

)2
,

Tr {MΣ†MΣ† + M†ΣM†Σ} , Tr {M†M}

• L(6) : . . .

(4.4.82)

The lowest-order Lagrangian for dχ = 2 is just the nonlinear sigma model.
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Fig. 4.14: Chiral expansion of π and N propagators, ππ and Nπ scattering.

Unfortunately, the inclusion of nucleons disrupts the power counting because the
nucleon mass is not a small scale, and loop diagrams may contribute at the same order
as tree-level diagrams. This problem is addressed in heavy-baryon ChPT, where
manifest covariance is traded for a systematic power counting.

One can then perform loop expansions5 for amplitudes like those in Fig. 4.14:

� π and N propagators, where the latter allow one to determine the nucleon mass
as a function of m2

π.

� ππ scattering near pion-production threshold (s = 4m2
π, t = u = 0), which is the

onset of the physical region. At threshold, the scattering amplitude is expressed
by the ππ scattering lengths, which vanish in the chiral limit.

� Nπ scattering close to pion production threshold s = (M + mπ)2, where at the
threshold one can extract the Nπ scattering lengths; etc.

Several ChPT extensions are possible:

� In the case of SU(3)f , the meson matrix becomes Σ = eiλ·ϕ/Λ, where the λa are
the Gell-Mann matrices:

λ ·ϕ =
√

2




π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K0 −2 η8√
6


 . (4.4.83)

� The effect of the axial anomaly can be implemented through a Wess-Zumino-
Witten (WZW) term.

� Since ChPT is still a perturbation theory around small momenta and pion masses,
it cannot generate resonance poles which are nonperturbative effects. This is
addressed in unitarized ChPT, which amounts to solving self-consistent Bethe-
Salpeter equations of the form (3.1.153) but for hadronic correlation functions.

5See e.g. S. Scherer, Adv. Nucl. Phys. 27 (2003) 277, hep-ph/0210398 for explicit calculations.

http://arxiv.org/abs/hep-ph/0210398

