
Chapter 5

High-energy phenomenology

5.1 Deep inelastic scattering

From elastic eN scattering one can extract the nucleon’s electromagnetic form factors.
In a general inelastic scattering process the nucleon does not stay intact; instead it
breaks up and produces hadronic final states. Depending on the invariant mass of the
hadronic end product, the inelastic cross section then contains nucleon resonance peaks
and nucleon-meson continua. Moreover, deep inelastic scattering (DIS) has given
us first convincing evidence for the existence of quarks since it probes the composite
nature of the nucleon. In DIS the transferred momentum of the photon is so large
that it strikes the perturbative ‘partons’ inside the nucleon, which allows us to describe
the longitudinal momentum distributions of the quarks and gluons through parton
distribution functions.
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Fig. 5.1: DIS

Phase space. Employing the variables (4.5.8–4.5.9) with
massless electrons (m = m′ = 0), there are three indepen-
dent Lorentz invariants: the spacelike momentum transfer
τ = Q2/(4M2) ≥ 0, the crossing variable λ, and the in-
variant mass W = M ′ of the hadrons in the final state
which is no longer fixed but also a variable. The kinematic
phase space of the process, which in elastic scattering was
described by the two-dimensional Mandelstam plane, thus
becomes three-dimensional. Instead of W , we could work
with either of the variables ω, ν or the Bjorken variable x
defined in Eq. (4.5.16):

W = M
√

1 + 4ω , ω + τ =
ν

2M
=
τ

x
. (5.1.1)

Below we will see that in the one-photon exchange approximation the cross section
factorizes again into a leptonic and a hadronic part, where the hadronic subprocess
only depends on τ and ω.
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Fig. 5.2: Kinematic phase space in inelastic eN scattering at fixed lepton energy E in the
variables (ω, τ), left, and (x, τ), right. The physical region is shown in blue and the resonance
region in brown. Lines of constant scattering angle θ and Bjorken-x are also included.

To relate the Lorentz invariants to the incoming lepton energy E and the scattering
angle θ in the lab frame, we infer from the relations (4.5.38):

τ = (ε− ω)
4ε sin2 θ

2

1 + 4ε sin2 θ
2

= εx
4ε sin2 θ

2

x+ 4ε sin2 θ
2

, ε :=
E

2M
. (5.1.2)

The resulting phase space in the (ω, τ) and (x, τ) planes is sketched in Fig. 5.2. For
fixed lepton energy E, the physically allowed region is bounded by ω = 0 ⇔ x = 1
(elastic scattering), τ = 0 (forward angles θ = 0), and backward angles θ = π which
for large energies implies τ ≈ ε− ω ≈ εx. This is the blue area in the plot, whose size
is characterized by the external control parameter E: if we increase the energy of the
lepton beam, we can reach higher τ and ω values. We can locate different regions in
these plots:

� At the elastic threshold ω = 0 ⇔ x = 1, the invariant mass is W = M . The
region W & M (or ω . 1) is the resonance region where nucleon resonances
appear in the cross section, starting with the ∆(1232) peak as shown in Fig. 5.3.
Above W ∼ 2 GeV, there is no visible resonance structure left.

� The limit τ + ω → ∞ and ω/τ = const. defines the Bjorken limit: this is the
DIS region where scaling occurs. From Eq. (5.1.1) the Bjorken limit corresponds
to ν →∞ and constant Bjorken-x.

� The region of small x is interesting for several reasons and assumed to give ex-
perimental access to the properties of gluons.
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Fig. 5.3: Double-differential inelastic eN cross section from Eq. (5.1.11) at fixed lepton
energy E and scattering angle θ. At large invariant masses, the resonance peaks are washed
out. (Halzen and Martin, Quarks and Leptons: An Introductory Course in Modern Particle
Physics, Wiley, 1984.)

Cross section and structure functions. Let us work out the cross section for
inelastic eN scattering. In an inclusive measurement only the outgoing electron is
detected but not the remnants of the proton. The cross section in the one-photon
approximation still has the generic form of Eqs. (4.5.41–4.5.42) with the same leptonic
tensor (4.5.67). However, the hadronic contribution to the invariant matrix element
|M|2 and to the phase space factor now sums over all possible final states,

dσ =
1

4ME

d3kf
(2π)3 2E′

e4

q4
Lµν 4πM Wµν ,

4πM Wµν =
∑

X

d3pf
(2π)3 2EX

〈N(pi)|V µ
em(0) |X(pf )〉 〈X(pf )|V ν

em(0) |N(pi)〉

× (2π)4 δ4(q + pi − pf ) .

(5.1.3)

Here we absorbed the integral over d3pf and the δ−function for energy-momentum
conservation into a hadronic tensor Wµν , and V µ

em is the electromagnetic current oper-
ator from Eq. (3.1.92) that enters in the electromagnetic transition from the nucleon
to all possible final states X.

Observe that the hadronic tensor comprises the completeness relation (2.2.5). If we
write the δ−function in momentum space as

(2π)4 δ4(q + pi − pf ) =

∫
d4z ei(q+pi−pf )z , (5.1.4)

use translation invariance (2.2.10–2.2.11) to shuffle the z−dependence in the phase
factor ei(pi−pf )z into the current operators, and sum over the complete set of states X,
we obtain:

4πM Wµν(p, q) =

∫
d4z eiqz 〈N(pi)|V µ

em

(
z
2

)
V ν

em

(
− z2
)
|N(pi)〉

=

∫
d4z eiqz 〈N(pi)|

[
V µ

em

(
z
2

)
, V ν

em

(
− z2
)]
|N(pi)〉 .

(5.1.5)
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In the second line we replaced the product of the currents by their commutator because
the matrix element of V ν

em

(
− z2
)
V µ

em

(
z
2

)
is zero: it gives rise to a δ−function δ(q−pi+pf )

which cannot be saturated by any intermediate state. Energy conservation would re-
quire EX = M − E + E′ = M − ν ≤ M , but the nucleon is the lightest ground-state
baryon. In this way, the hadronic tensor is the matrix element of the current commu-
tator, which is analogous to the commutators in Eq. (3.1.58) and vanishes outside the
light cone. We will return to this expression later.

For now, let us work out the general form of the hadronic tensor Wµν(p, q) in
momentum space. For unpolarized scattering, it can only depend on the Lorentz tensors

Tµνq , pµT p
ν
T , qµqν , pµT q

ν ± qµpνT , (5.1.6)

where Tµνq = gµν − qµqν/q2 is the transverse projector and pµT = Tµνq pν the momentum
transverse to qµ. Current conservation still holds because the sum of the outgoing
charges must equal the nucleon charge, so Wµν must be transverse in its Lorentz
indices: qµW

µν = Wµνqν = 0. The most general transverse tensor according to these
constraints is given by

Wµν = −W1(τ, ω)Tµνq +
W2(τ, ω)

M2
pµT p

ν
T , (5.1.7)

where the response functions W1 and W2 depend on the Lorentz invariants τ and ω.
From these one defines the dimensionless nucleon structure functions as

F1(τ, ω) = MW1(τ, ω), F2(τ, ω) = ν W2(τ, ω) . (5.1.8)

(For polarized scattering, there are two further spin-dependent structure functions g1, g2

and there is also another term in the lepton tensor.)

Combining this with the leptonic tensor yields

LµνWµν = 4

[
W2

M2

(
(p · k)2 +

q2

4
p2
T

)
−W1

(
k2 +

3

4
q2

)]

= 4M2
[
W2

(
λ2 − (τ + ω)2 − τ

)
+ 2W1 τ

]

= 4EE′ cos2 θ

2

[
W2 + 2W1 tan2 θ

2

]
.

(5.1.9)

In going from the first to the second line we used kµT = kµ, p ·k = M2 λ, k2 = M2τ and

p2
T = p2 − (p · q)2

q2
= M2

(
1 + 2ω + τ +

ω2

τ

)
=
M2

τ

(
τ + (τ + ω)2

)
, (5.1.10)

and to obtain the third line we exploited Eqs. (4.5.36) and (4.5.38). The resulting cross
section, which is shown in Fig. 5.3, is

d2σ

dΩ dE′
=
α2

q4

E′

E
LµνW

µν =
α2 cos2 θ

2

4E2 sin4 θ
2

[
W2 + 2W1 tan2 θ

2

]
. (5.1.11)
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How does this compare to the limit of elastic scattering? From (4.5.44) and (4.5.71)
we can write down the double-differential cross section for a pointlike fermion in the
elastic case:

d2σ

dΩ dE′
=
|M|2
4ME

1

(4π)2

E′ δ(ω)

2M2
=

α2

4M2τ2

E′

E

δ(ω)

2M
(λ2 + τ2 − τ)

=
α2 cos2 θ

2

4E2 sin4 θ
2

δ(ω)

2M

(
1 + 2τ tan2 θ

2

)
.

(5.1.12)

Hence, in the elastic limit the response functions reduce to

W1(τ, ω) = τ
δ(ω)

2M
, W2(τ, ω) =

δ(ω)

2M
. (5.1.13)

We can trade the dependence on ω by a dependence on the Bjorken variable x using
the relations

τ =
ν

2M
x , ω =

ν

2M
(1− x) . (5.1.14)

As a consequence, when expressed in terms of τ and x, the structure functions defined
in Eq. (5.1.14) become

F1(τ, x) = MW1(τ, x) =
1

2
δ(1− x) ,

F2(τ, x) = ν W2(τ, x) = δ(1− x) .
(5.1.15)

We see that for elastic scattering on a pointlike particle, the dimensionless structure
functions F1(τ, x) and F2(τ, x) are functions of x only; in addition, the δ−function
enforces x = 1 in the elastic limit.

For scattering on a composite nucleon, the expressions (5.1.13) in the elastic limit
must be multiplied with the Sachs form factor combinations in the Rosenbluth cross
section (4.5.77). Here one should remember not to confuse the structure functions
F1 and F2 with the equally named Dirac and Pauli form factors. In fact, even their
physical meanings are reversed: By comparing the two cross sections, one can see
that W1 encodes the spin of the target and vanishes for a spinless particle. Thus, the
structure function F1 carries the spin dependence, whereas in the form factor case it
is rather the Pauli form factor (or the magnetic form factor GM ) that contains the
nucleon spin.

Bjorken scaling and the parton model. One might expect that for inelastic scatter-
ing processes (x 6= 1), away from the nucleon resonance region, the structure functions
F1 and F2 are complicated functions of τ and x. However, it turns out that in the DIS
region they are almost independent of τ and only functions of x:

F1,2(τ, x) ≈ F1,2(x) . (5.1.16)

This is visible in the left of Fig. 5.4 and called Bjorken scaling. Another observation
is the Callan-Gross relation, which implies that F1 and F2 are not independent:

F2(x) = 2xF1(x) . (5.1.17)



190 High-energy phenomenology

Fig. 5.4: Left: scaling behavior in the structure function F2(Q2, x), PDG 2020, P. A. Zyla
et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020). Right: experimental data for the ratio
and difference of proton and neutron structure functions in Eq. (5.1.29). Source: Halzen and
Martin (see Fig. 5.3).

The origin of scaling can be understood from dimensional arguments, which follow
from the near scale invariance of massless perturbative QCD (up to logarithmic cor-
rections). A dimensionless function can only depend on dimensionless variables. τ and
ω are only dimensionless because we scaled the momenta with the nucleon mass M ,
which requires the presence of a nonperturbative nucleon mass to begin with. If we
scatter instead on (nearly) massless quarks, no such scale is available and therefore the
dimensionless structure functions cannot depend on τ and ω individually but only on
their dimensionless combination τ/ω ∼ q2/p · q. Hence, the observation of scaling is
an indication for the composite nature of the nucleon in terms of pointlike, essentially
massless quarks and gluons.

The experimental observation of Bjorken scaling has led to the development of the
parton model. Here the proton is viewed as a collection of ‘partons’, namely valence
quarks, sea quarks and gluons. The incoming momentum pi of the proton (mass M)
is the sum of the parton momenta, pi =

∑
k pk, where pk is the four-momentum of a

single onshell parton with mass mk. The basic assumption we need in the following is
collinearity: pk = ξk pi, which can be justified in the infinite momentum frame.
If we write

pi =

(√
p2 +M2

p

)
, pk =

(√
ξ2
k p

2 + (p⊥k )2 +m2
k

ξk p+ p⊥k

)
, (5.1.18)

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-structure-functions.pdf
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then ξk defines the longitudinal momentum fraction of parton k in the direction of
the proton’s three-momentum p. In the infinite-momentum frame (|p| → ∞) we can
neglect the transverse components and masses:

|p⊥k | � |p| , mk � |p| , ⇒ pk ≈ ξk pi ,
∑

k

ξk = 1 . (5.1.19)

The collinearity assumption allows for a simple interpretation of the Bjorken scaling
variable. We know from Eq. (4.5.16) that elastic scattering on the nucleon corresponds
to x = −q2/(2pi · q) = 1. In the inelastic process (x 6= 1), elastic scattering on a single
parton k then entails that

xk := − q2

2pk · q
= − q2

2pi · q
1

ξk
=

x

ξk
= 1 ⇒ ξk = x . (5.1.20)

In this way, the Bjorken variable x assumes the meaning of the parton’s longitudinal
momentum fraction in the infinite-momentum frame. The photon only couples
to those partons whose momentum fraction is ξk = x, hence a measurement of the
structure function F2(x) allows us to ‘see’ how the parton momenta are distributed
inside the proton. In elastic scattering we have x = 1 and the photon couples to the
whole proton since it carries the full momentum. Note that if we want to guarantee
p2
i = M2, we should set p⊥k and mk = ξkM . Although this last relation is a bit

nonsensical as it would imply that the ‘mass’ of a parton changes with its momentum
fraction, we need it for consistency of the naive parton model.

Let us define the parton distribution function or PDF as the momentum distri-
bution fk(ξ) of a parton in the hadron, so that fk(ξ) dξ is the probability density that
a parton carries a momentum fraction between ξ and ξ + dξ. Momentum conservation
implies

∑

k

1∫

0

dξ ξ fk(ξ) = 1 . (5.1.21)

Now suppose we scatter on spin-1
2 quarks. Using the relations (5.1.14) with xk = x/ξk

and mk = ξkM , the structure functions F
(k)
j with j = 1, 2 for the parton k are

2F
(k)
1 = 2MW

(k)
1 =

M

mk
2mkW

(k)
1 =

M

mk
xk δ(1− xk) = δ(ξk − x) ,

F
(k)
2 = νW

(k)
2 = δ(1− xk) =

ξ2
k

x
δ(ξk − x) = x δ(ξk − x) ,

(5.1.22)

and integrating over all partons yields

Fj(x) =
∑

k

e2
k

∫
dξ fk(ξ)F

(k)
j (ξ, x) ⇒

F1(x) = 1
2

∑
k e

2
k fk(x) ,

F2(x) = x
∑

k e
2
k fk(x) .

(5.1.23)

Hence we have shown that in the parton model F1 and F2 are indeed only functions
of x, and we can confirm the Callan-Gross relation (5.1.16). The latter is also an
experimental indication for the spin-1

2 nature of the quarks: if quarks had spin zero,
F1(x) would vanish.
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Fig. 5.5: Structure functions for different compositions of the proton.

Due to the Callan-Gross relation only the structure function F2(x) will be relevant
in what follows. What does it look like? If the proton consisted of a single ‘quark’
that carried all of its momentum, the structure function would have a single peak at
x = 1 (see Fig. 5.5). If it consisted of three non-interacting quarks, the quarks would all
carry the same momentum fraction and F2(x) would have a peak at x = 1

3 . If the three
quarks interact with each other, they can exchange momentum and hence the momen-
tum fraction carried by each quark will fluctuate; the resulting structure function is a
smooth distribution peaked near x = 1

3 . Finally, the presence of sea quarks will lead to
an enhancement at small x because sea quarks are created in Bremsstrahlung-like pro-

cesses which are typically enhanced at small momenta and lead to xf(x)
x→0−−→ const.

Note that gluons will also contribute to the momentum sum rule (5.1.21) whereas the
structure function only probes electrically charged partons (quarks).

Parton distribution functions. Now let’s see how much information on the PDFs
we can gather from experimental data on F2(x). There is no sensible way to distinguish
two identical partons within a proton, but we can still group them according to the
various quark and antiquark flavors: fk(x) = u(x), ū(x), d(x), d̄(x), etc., so that we
have

F p2 (x)

x
= q2

u ((u(x) + ū(x)) + q2
d

(
d(x) + d̄(x)

)
+ q2

s (s(x) + s̄(x)) + . . . (5.1.24)

It is usually sufficient to stop at the strange quark because the probability for finding
charm in the proton is very small. u(x) is the probability distribution for up quarks in
the proton, ū(x) that of anti-up quarks, and so on. One can also measure the structure
function Fn2 of the neutron via electron-deuteron scattering. Charge symmetry entails
that the d distribution in the neutron is identical to the u distribution in the proton:
u = up = dn, d = dp = un, s = sp = sn, and analogously for the antiquark PDFs:

Fn2 (x)

x
= q2

d ((u(x) + ū(x)) + q2
u

(
d(x) + d̄(x)

)
+ q2

s (s(x) + s̄(x)) + . . . (5.1.25)

In the following it will be more convenient to work with valence- and sea-quark distri-
butions, defined via

u = uv + us ,

d = dv + ds ,

ū = ūs ,

d̄ = d̄s ,

s = ss ,

s̄ = s̄s ,
(5.1.26)

because antiquarks and strange quarks can only appear in the sea. Now, since the
PDFs are number densities defined on the momentum fraction x, the integrals over
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this range are just the total flavor numbers of each quark type:

1∫

0

dxuv(x) = 2 ,

1∫

0

dx dv(x) = 1 ,

1∫

0

dx
[
fs(x)− f̄s(x)

]
= 0 . (5.1.27)

The third relation expresses fermion number conservation for each flavor f = u, d, s:
by summing over all individual partons, we must recover charge 1, baryon number 1
and strangeness 0 of the proton.

Can we extract the valence and sea distributions from the data for F p,n2 (x)? We have
two measured quantities but too many unknowns. Let’s make the further simplifying
assumption that all sea-quark distributions are identical: fs(x) = f̄s(x) =: S(x). Then
the structure functions for the proton and neutron become

F p2 (x)

x
= q2

u uv(x) + q2
d dv(x) + (q2

u + q2
d + q2

s) 2S(x) ,

Fn2 (x)

x
= q2

d uv(x) + q2
u dv(x) + (q2

u + q2
d + q2

s) 2S(x) ,

(5.1.28)

from where we can form their ratio and their difference:

R =
Fn2
F p2

=
uv + 4dv + 12S

4uv + dv + 12S
, F p2 − Fn2 =

x

3
(uv − dv) . (5.1.29)

The ratio satisfies the Nachtmann inequality 1
4 ≤ R(x) ≤ 4: in a region of x where

the up (down) quarks dominate, we have R = 1
4 (R = 4); if the sea quarks dominate

we will find R = 1. The ratio is plotted in Fig. 5.4 and reveals that the sea quarks are
indeed dominant at small x whereas valence up quarks are important at large x. The
difference in (5.1.29) is also plotted: it measures only the valence-quark contribution
and shows a peak around x = 1/3, as we had expected. Finally, the sum

9

5
(F p2 + Fn2 ) = x

(
uv + dv +

24

5
S

)
(5.1.30)

can be plugged into the momentum sum rule (5.1.21) which now takes the form

∫
dxx (uv + dv + 6S) + ε = 1 , (5.1.31)

where ε is the gluon contribution to the proton’s longitudinal momentum. From the
experimental data we can roughly estimate

9

5

∫
dx (F p2 + Fn2 ) ≈ 0.54 ≈ 1− ε , (5.1.32)

which entails that the gluons carry almost half of the proton’s momentum. In fact, the
gluon PDFs dominate at small values of x, see Fig. 5.6.
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Fig. 5.6: Valence, sea-quark and gluon PDFs shown at two different resolution scales (PDG,
same reference as in Fig. 5.4).

How good is the assumption that all sea-quark distributions are identical? If we go
back to the original equations (5.1.24) and (5.1.25), take their difference and integrate
over x, we have
∫
dx

F p2 − Fn2
x

=
1

3

∫
dx (uv − dv + us + ūs − ds − d̄s)

(5.1.27)
=

1

3
+

2

3

∫
dx (ūs − d̄s)

which should equal 1
3 if ūs = d̄s = S (this is the Gottfried sum rule). Instead, the

experimental value is ∼ 0.23⇒
∫
dx (d̄s− ūs) ∼ 0.15, which entails that the light quark

sea is indeed flavor-asymmetric.

Scaling violations. The left plot in Fig. 5.4 demonstrates that scaling is not exact
because the structure functions show a Q2 dependence, which is most pronounced at
small and large values of x. In terms of the PDFs, this implies that their x−dependence
is not completely independent of the resolution scale Q2 but also evolves with Q2, which
can be seen in Fig. 5.6. We can intuitively understand this as follows: a photon with
intermediate Q2 does not resolve the full spatial structure of the proton and mainly
sees three interacting quarks, together with parts of the sea. In contrast, a high-
Q2 photon can resolve small distances and will reveal more and more of the quark
sea which contains short-distance processes such as gluon emission from a quark or
gluon splitting into qq̄ pairs. As a result, the sea-quark contributions will be more
prominent at higher Q2. On the other hand, since the photon can resolve more partons,
momentum conservation implies that each parton now carries a smaller fraction of the
total momentum, and hence the PDFs will be shifted to smaller x. The resulting
structure function F2(x) that sums up the individual quark PDFs will rise with higher
Q2 at small x and fall with higher Q2 at large x.
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The short-distance dynamics depend on the resolution scale through the coupling
αs(Q

2). As a consequence, the individual quark structure functions F ki will no longer be
mere δ−functions as in Eq. (5.1.22) but also inherit a Q2 dependence from the coupling.
Since the coupling is dimensionless, it also introduces a scale µ (the factorization
scale), so that Eq. (5.1.23) becomes

Fj(x,Q
2) =

∑

k

e2
k

∫
dξ fk(ξ, µ)F

(k)
j

(
ξ, x, Q

2

µ2

)
. (5.1.33)

The F
(k)
j encode the short-distance splitting processes and are calculable in perturbative

QCD. The PDFs fk, which now also depend on µ, are inherently nonperturbative and
have to be fitted to experimental data or calculated with nonperturbative methods.

Because the nucleon structure function must be independent of the factorization
scale µ, its total derivative with respect to µ must vanish. Similarly to the Callan-
Symanzik equation (2.3.66), one then derives the DGLAP equations (Dokshitzer,
Gribov, Lipatov, Altarelli, Parisi) dFj/dµ = 0. They relate PDFs at different µ with
each other and thereby allow one to calculate the scaling violations using QCD pertur-
bation theory.

Compton amplitude and PDFs. How can PDFs be calculated nonperturbatively?
Let us return to the hadronic tensor Wµν(q) from Eq. (5.1.5) which enters in the
inelastic eN cross section. By means of the optical theorem, it can be written as
the imaginary part of the nucleon’s forward Compton scattering amplitude:
4πM Wµν(p, q) = 2 ImTµν(p, q). The forward Compton amplitude Nγ∗ → Nγ∗ is
given by

Tµν(p, q) = i

∫
d4z eiqz 〈N(pi)|TV µ

em

(
z
2

)
V ν

em

(
− z2
)
|N(pi)〉 . (5.1.34)

If we apply the kinematics in Eqs. (4.5.8–4.5.9), then in the forward limit (vanishing
momentum transfer) we have p = pi = pf and the photon momentum is k = ki = kf ,
so that k2 and the crossing variable λ are the independent Lorentz-invariants. The
variables τ and x defined in DIS are related to these by

τ = − k2

4M2
, x = − k2

2p · k =
2τ

λ
. (5.1.35)

Thus, the structure functions, which depend on τ and x, can be expressed through
the Lorentz-invariant form factors of the Compton amplitude in the forward limit,
which depend on those same variables. The Mandelstam variables s and u in Compton
scattering are given by

{ s
u

}
= (p± k)2 = M2 (1− 4τ ± 2λ) = M2

(
1− 4τ ± 4τ

x

)
, (5.1.36)

and the resulting Mandelstam plane is shown in Fig. 5.7. For real or virtual photons we
have τ ≥ 0, and the physical region for s ≥M2 corresponds to 0 ≤ x ≤ 1. The Comp-
ton amplitude has non-analyticities arising from intermediate baryon resonances and
baryon-meson continua. Hence, a theoretical handle on nucleon Compton scattering
allows us to compute the nucleon’s structure functions in DIS.
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Fig. 5.7: Left: Hadronic tensor Wµν in the parton model, and its relation with the forward
Compton scattering amplitude and its factorized handbag structure. Right: Mandelstam plane
in forward Compton scattering.

What about the PDFs? To begin with, it is important to realize that in the Bjorken
limit the Fourier transform in Eq. (5.1.5) is dominated by the behavior close to the
light cone z2 → 0, i.e., where the two interaction points are separated by a lightlike
distance. This is easiest seen using light-cone variables:

a± :=
1√
2

(a0 ± a3) , a⊥ = (a1, a2) ⇒ a · b = a+b− + a−b+ − a⊥ · b⊥ . (5.1.37)

Then the integral (5.1.5) becomes schematically:

W (p, q) =

∫
dz− e

iq+z−

∫
dz+ e

iq−z+

∫

z2
⊥<2z+z−

d2z⊥ e
−iq⊥·z⊥W (p, z) . (5.1.38)

The domain of the z⊥ integration is restricted since the current commutator vanishes
outside the light cone (z2 = 2z+z− − z2

⊥ < 0) due to causality. In light-cone variables,
the Bjorken limit ν →∞, x = const. corresponds to q+ →∞ and q− = const:

√
2 q± = q0 ± q3 (4.5.27)

= ν ±
√
ν2 − q2 = ν

(
1±

√
1 +

2Mx

ν

)
≈
{

2ν +Mx+ . . .

−Mx+ . . .

For q+ →∞ and q− = const, the integral (5.1.38) is determined by the behavior of the
integrand for z− → 0 and z+ finite; this is the area with the least oscillations according
to the Riemann-Lebesgue lemma. The condition z2

⊥ < 2z+z− then implies z2 → 0+

but zµ 6= 0, which is the light cone.

To proceed, we need to work out the current commutator in Eq. (5.1.5). We derived
equal-time current commutators earlier in Eq. (3.1.57) using the anticommutation re-
lations for the quark fields. For free fields one can generalize that formula to unequal
times x0 6= y0 with the generalized anticommutation relations

{
ψ(x), ψ(y)

}
= S(x− y),

{
ψ(x), ψ(y)

}
=
{
ψ(x), ψ(y)

}
= 0 , (5.1.39)
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where S(z) := (i/∂ + m) ∆(z), and ∆(z) is the causal propagator which vanishes
outside the light cone, i.e., for spacelike distances z2 < 0:

∆(z) :=

∫
d3p

2Ep

e−ipz − eipz
(2π)3

∣∣∣
p0=Ep

=

∫
d4p

(2π)3
e−ipz ε(p0) δ(p2 −m2) , (5.1.40)

and ε(a) = a/|a| = Θ(a) − Θ(−a) is the sign function. At equal times z0 = 0, the
causal propagators reduce to ∆(z) = 0, ∂0∆(z) = −iδ3(z) and S(z) = γ0 δ

3(z) which
reproduces the equal-time (anti-)commutation relations for scalar and fermion fields.
(In contrast to the Feynman propagator (2.2.14), the causal propagator sums up the
positive- and negative-energy pole residues of a free scalar propagator.)

Rederiving the current commutator relation in this case gives the result1

[
jΓ
a (x), jΓ′

b (y)
]

= ifabc j
+
c (x, y) + dabc j

−
c (x, y) +

δab
N

j−(x, y) , (5.1.41)

which depends on the bilocal currents

j±a (x, y) :=
1

2

(
ψ(x) ΓS(x− y) Γ′ ta ψ(y)± ψ(y) Γ′ S(y − x) Γ ta ψ(x)

)
. (5.1.42)

Here we recognize the ‘handbag’ structure from Fig. 5.7 when putting the result
back in the hadronic tensor Wµν ; for the electromagnetic current commutator we have
Γ = γµ and Γ′ = γν . The light-cone singularities come from the free propagator S(z)
which for a massless fermion reduces to

S(z)
m=0−−−−→ 1

2π
/∂
(
ε(z0) δ(z2)

)
. (5.1.43)

It represents the hard part of the process, namely the scattering of the photon on a
single perturbative quark which was the underlying assumption of the parton model.

The soft part is expressed through the remaining matrix element of bilocal quark-
antiquark currents which is closely related to the quantity in Eq. (4.5.48). One can work
out the Dirac structures for ΓS(z)Γ′ and Γ′S(−z)Γ and expand the resulting currents
in Taylor series about z = 0. This leads to the operator product expansion (OPE),
schematically written as

j
(
z
2 ,−

z
2

)
=
∑

i

ci(z)Oi(0) , (5.1.44)

where the Oi(0) are local operators and the ci(z) are the Wilson coefficients. The op-
erators which are most important at high Q2 are those for which the ci(z) are most sin-
gular as z2 → 0. This allows for a rigorous definition of PDFs that enter in Eq. (5.1.33)
and makes them accessible for nonperturbative calculations.

Finally, the relation with the Compton amplitude also allows one to define non-
forward generalized parton distributions (GPDs). They encode the transverse
structure of the proton, which is related to the orbital momentum carried by the quarks
and gluons. In contrast to PDFs, they are no longer connected with DIS because a
nonvanishing momentum transfer implies pf 6= pi. Hence, they have to be extracted
directly from deeply virtual Compton scattering (DVCS) or related processes.

1Extra care should be taken with regard to Schwinger terms, which include derivatives of the
δ−function and do not show up in commutators of zero components of currents.


