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3.2 Hadron spectrum

We have studied the flavor structure of the QCD Lagrangian and its group-theoretical
implications for hadron properties as well as for currents and for n−point functions.
Now it is time for a reality check, because in principle the various symmetries of the
Lagrangian should be reflected in the hadron spectrum:

� SU(3) color gauge invariance: Hadrons must be colorless, so they can only
appear in the singlet representation of SU(3)c. Color singlets can be obtained by
combining quarks and antiquarks to mesons or three quarks to baryons:

3⊗ 3 = 1⊕ 8 , 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 . (3.2.1)

Color singlets also arise from combining two (or more) gluons, which leads to the notion
of glueballs:

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27 . (3.2.2)

The product representations of SU(N) are easiest to work out using Young diagrams
(see Appendix A.3). Moreover, color singlets also appear in higher patterns of these
combinations such as tetraquarks,

3⊗ 3⊗ 3⊗ 3 = (1⊕ 8)⊗ (1⊕ 8) = 1⊕ 1⊕ 8⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27 , (3.2.3)

pentaquarks (3⊗3⊗3⊗3⊗3), hybrid mesons (3⊗3⊗8), and so on. If we change
the number of colors Nc, the nature of a ‘hadron’ will change as well (see Table A.2 in
the appendix):

Nc ⊗N c = 1⊕ . . . , Nc ⊗ · · · ⊗Nc︸ ︷︷ ︸
Nc times

= 1⊕ . . . , (3.2.4)

which means that mesons still survive as qq̄ states while baryons become bound states
of Nc quarks instead of three.

� Flavor symmetries: The usual SU(Nf )V flavor symmetry allows us to classify
hadrons in flavor multiplets, where in contrast to color all combinations are allowed.
In the three-flavor case, mesons form flavor singlets and octets whereas baryons come
in singlets, octets and decuplets (see Fig. 3.7):

3⊗ 3 = 1⊕ 8 , 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 . (3.2.5)

The states within these multiplets are labeled by the third isospin component I3 and
the hypercharge Y (or equivalently, the strangeness), which are conserved quantum
numbers even if the SU(3) flavor symmetry is broken. In fact, the observation that
hadrons appear in SU(3) octet, decuplet and singlet representations but not in the
fundamental one was the starting point for the development of the quark model.

The U(1)V symmetry, on the other hand, corresponds to the baryon number.
Since there is no quantum number that distinguishes mesons from glueballs, tetraquarks
or hybrids, these are strictly speaking all mesons (B = 0), whereas pentaquarks are
technically baryons (B = 1).
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Fig. 3.7: SU(3)f meson singlet and octet (for 0−+ states); baryon singlet, octet and decuplet.

� Poincaré invariance: The invariance of the QCD action under the Poincaré
group gives us two quantum numbers to label the states, namely the eigenvalues of
its Casimir operators: the total angular momentum (‘spin’) J and the mass M
(see Appendix B). Together with parity invariance of the strong interaction, this allows
us to arrange hadrons according to their JP quantum numbers. We find scalar (0+),
pseudoscalar (0−), vector (1−), axialvector (1+), tensor (2+) mesons and more, whereas

the possible JP values for baryons are 1
2

±
, 3

2

±
, 5

2

±
, etc.

� Charge-conjugation invariance: Charge conjugation exchanges a particle with
its antiparticle and therefore reverses nq for all flavors, the number of quarks minus
antiquarks: Uc |nu, nd, ns, . . . 〉 = | − nu,−nd,−ns, . . . 〉. Since B, I3, Y and Q are then
reversed as well, only states for which all these additive quantum numbers vanish can
be C−parity eigenstates. These are the neutral flavorless mesons, which are their own
antiparticles and can be classified according to JPC . Applying Uc twice reverts the
state back to its original one (U2

c = 1), so its possible eigenvalues are C = ±1. From
the transformation properties of the quark fields,

Uc ψα U
−1
c = ηc ψβ Cβα , Uc ψα U

−1
c = η?c Cαβ ψβ C = iγ2γ0, (3.2.6)

together with their anticommutativity, one can show that the Lagrangian is charge-
conjugation invariant (ηc is a phase factor). One can also work out the transformation
behavior of the currents:

S → S, P → P, V µ → −V µ, Aµ → Aµ . (3.2.7)

Therefore, the mesons that are created by these currents carry the quantum numbers
JPC = 0++, 0−+, 1−− and 1++, respectively.

Experimentally, hadrons do indeed come in JP (C) multiplets. For three flavors, in
each JP (C) channel one finds SU(3)f octets and singlets for mesons as well as octets, de-
cuplets and singlets for baryons (which can mix, see below). The corresponding states
are distinguished by their quantum numbers I3 and Y . In addition, the multiplets
form ground states and radial excitations, which are distinguished by the remain-
ing ‘quantum number’ M , i.e., their mass. In the following we discuss the current
experimental status on the hadron spectrum.



3.2 Hadron spectrum 93

3.2.1 Mesons

SU(3) multiplets. Let us start with the meson spectrum obtained from three light
quark flavors u, d and s. We first discuss the SU(3) multiplets and resulting flavor
wave functions. A vector ψ that transforms under the fundamental representation
of SU(3) satisfies ψ′ = Uψ. In a given basis |j〉 with 〈i|j〉 = δij , this implies

ψ =
∑

k

ψk |k〉 ⇒ ψ′i =
∑

i

Uij ψj , U |j〉 =
∑

k

Ukj |k〉 , (3.2.8)

where 〈i|U |j〉 = Uij are the matrix elements in that basis, such that

ψ′ = Uψ =
∑

j

ψj U |j〉 =
∑

j,k

Ukj ψj |k〉 =
∑

k

ψ′k |k〉 . (3.2.9)

The same relations hold for the generators, where for later convenience we attach a hat
to distinguish the basis-independent operators from their matrix elements:

t̂a |j〉 =
∑

k

(ta)kj |k〉 , 〈i| t̂a|j〉 = (ta)ij . (3.2.10)

In the fundamental representation the generators are proportional to the Gell-Mann
matrices. The two Cartan generators

t3 =
1

2




1 0 0
0 −1 0
0 0 0


 , Y =

2√
3
t8 =

1

3




1 0 0
0 1 0
0 0 −2


 (3.2.11)

correspond to the third isospin component I3 and the hypercharge Y and label the
states inside the multiplet. From Eq. (3.2.10) we can work out their eigenvalues:

t̂3 |u〉 = 1
2 |u〉 ,

t̂3 |d〉 = −1
2 |d〉 ,

t̂3 |s〉 = 0 ,

Ŷ |u〉 = 1
3 |u〉 ,

Ŷ |d〉 = 1
3 |d〉 ,

Ŷ |s〉 = −2
3 |s〉 ,

(3.2.12)

or we can read them off directly from the matrices t3 and Y using a Cartesian basis for
|u〉, |d〉 and |s〉. The eigenvalues (I3, Y ) define the weight vectors,

(
1
2 ,

1
3

)
. . . u ,

(
−1

2 ,
1
3

)
. . . d ,

(
0 , −2

3

)
. . . s , (3.2.13)

from where we can draw the triplet in the (I3, Y ) plane (left panel in Fig. 3.8). The
remaining generators

t̂± = t̂1 ± ît2 , û± = t̂6 ± ît7 , v̂± = t̂4 ± ît5 (3.2.14)

are ladder operators which lead away from the origin in the (I3, Y ) plane and connect
these states with each other, cf. Fig. 3.8:

t̂+ |d〉 = |u〉 ,
t̂− |u〉 = |d〉 ,

û+ |s〉 = |d〉 ,
û− |d〉 = |s〉 ,

v̂+ |s〉 = |u〉 ,
v̂− |u〉 = |s〉 .

(3.2.15)
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Fig. 3.8: Weight diagrams for the SU(3) fundamental triplet and antitriplet in the (I3, Y )
plane and ladder operators. Right: Construction of the octet using ladder operators.

A vector in the antitriplet representation 3 transforms as

ψ′
†

= ψ† U † ⇔ ψ′
?
i = U?ij ψ

?
j . (3.2.16)

In this case the generators are given by −t?a, which satisfy the same commutation
relations as the ta,

[−t?a,−t?b ] = ifabc (−t?a) , (3.2.17)

and thus define another three-dimensional representation (the conjugate representation
of the group). For the group SU(2), the generators ta and −t∗a are related by a unitary
transformation and hence equivalent (SU(2) representations are pseudoreal), but this
is no longer true for SU(N) with N > 2.

Writing the basis as |j̄〉, we have

t̂a |j̄〉 =
∑

k

(−t∗a)kj |k̄〉 , 〈̄i| t̂a|j̄〉 = (−t∗a)ij (3.2.18)

which entails

t̂3 |ū〉 = −1
2 |ū〉 ,

t̂3 |d̄〉 = 1
2 |d̄〉 ,

t̂3 |s̄〉 = 0 ,

Ŷ |ū〉 = −1
3 |ū〉 ,

Ŷ |d̄〉 = −1
3 |d̄〉 ,

Ŷ |s̄〉 = 2
3 |s̄〉 .

(3.2.19)

The weight vectors (I3, Y ) are

(
−1

2 , −1
3

)
. . . ū ,

(
1
2 , −1

3

)
. . . d̄ ,

(
0 , 2

3

)
. . . s̄ (3.2.20)

and produce the inverted triangle in Fig. 3.8. The ladder operators work as before
except the representation matrices of t̂± are (−t∗1) ± i(−t∗2) = −t∗∓ and not −t∗±, and
similarly for the remaining ones, because due to the complex conjugation these are
antilinear operators. As a result,

t̂+ |ū〉 = −|d̄〉 ,
t̂− |d̄〉 = −|ū〉 ,

û+ |d̄〉 = −|s̄〉 ,
û− |s̄〉 = −|d̄〉 ,

v̂+ |ū〉 = −|s̄〉 ,
v̂− |s̄〉 = −|ū〉 .

(3.2.21)

Appendix A collects more information on the irreducible representations of SU(N).
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0− 1− I I3 S

π+ ρ+ 1 1 0 ud̄ t+

π0 ρ0 1 0 0 1√
2

(uū− dd̄)
√

2 t3

π− ρ− 1 −1 0 dū t−

K+ K?+ 1/2 1/2 1 us̄ v+

K0 K?0 1/2 −1/2 1 ds̄ u+

K̄0 K̄?0 1/2 1/2 −1 sd̄ u−

K− K?− 1/2 −1/2 −1 sū v−

η8 ω8 0 0 0 1√
6

(uū+ dd̄− 2ss̄)
√

2 t8

η0 ω0 0 0 0 1√
3

(uū+ dd̄+ ss̄) 1√
3
1

Table 3.1: Normalized SU(3)f flavor wave functions for mesons.

Flavor wave functions for mesons. Next, we construct the irreducible 1 (singlet)
and 8 (octet) representations along the lines of the discussion in App. A.3: We build
the product wave functions as tensors of mixed rank (1, 1) that transform under the
reducible representation 3⊗ 3 = 1⊕ 8, and by orthogonalizing them we single out the
irreducible components in the end.

The simplest construction principle is the one via ladder operators illustrated in
Fig. 3.8. If we start from |π+〉 = |ud̄〉, then from Eqs. (3.2.12) and (3.2.19) the eigen-
values of t̂3 and Ŷ are

t̂3 |ud̄〉 = (t3 ⊗ 1+ 1⊗ (−t∗3)) |ud̄〉 = |ud̄〉 ,
Ŷ |ud̄〉 = (Y ⊗ 1+ 1⊗ (−Y∗)) |ud̄〉 = 0 ,

(3.2.22)

so the weight vector for |ud̄〉 is (I3, Y ) = (1, 0). If we apply the ladder operators t̂−
and û+, we obtain from Eqs. (3.2.15) and (3.2.21):

t̂−|ud̄〉 = |dd̄〉 − |uū〉 ∼ |π0〉 , û+|ud̄〉 = −|us̄〉 ∼ |K+〉 , etc. (3.2.23)

These states are then normalized so that e.g. 〈π+|π+〉 = 1. The remaining two states
with I3 = 0 and Y = 0 are constructed such that |η0〉 is a singlet and |η8〉 is orthogonal
to |π0〉 and |η0〉. The resulting flavor wave functions are collected in Table 3.1.

Note that in a Cartesian basis the flavor wave functions are 3 × 3 matrices which
are proportional to the SU(Nf ) generators: the π+ wave function is u ⊗ d̄ = t+, etc.
Thus, the flavor wave functions for mesons can already be read off from the generators
of the group, which goes back to Eq. (3.1.40): Since the currents and charges define
representations of their algebra on the state space, the flavor content of the generators
is inherited by the mesons that they create out of the vacuum. This is also the reason
why we attached the group generators to the Bethe-Salpeter wave function (3.1.138),
which should be read as the combinations that appear in Table 3.1.
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Fig. 3.9: Construction of weight diagrams by superimposing multiplets.

Yet another construction principle is shown in Fig. 3.9. Because the quantum num-
bers (I3, Y ) are additive, one can simply superimpose multiplets to arrive at the product
states. For 3 ⊗ 3 = 1 ⊕ 8, draw the triangle defined by 3 and add another 3 at each
corner of that triangle. This gives nine states for the corresponding values of (I3, Y ).
Likewise, for 3⊗ 3 = 3⊕ 6, add another triplet 3 at each corner of 3 to arrive at the
product states.

Mixing. Unfortunately, the identification of Table 3.1 with physical states only works
out in the limit of exact SU(3) flavor symmetry. If the quark masses mu = md = ms

are identical, the Lagrangian is invariant under SU(3)V . As a consequence,

� All states in the multiplet have the same mass;

� All vector currents and charges are conserved;

� Not only the third isospin component I3 and the hypercharge Y are conserved, but
also the Casimirs of SU(2) and SU(3), which are the isospin I and the quantum
numbers (p, q) that distinguish the multiplets (see Appendix A.2);

� The states π0 (with I = 1) and η8, η0 (with I = 0), which have the same I3 and
Y , differ in at least one quantum number I or (p, q).

If SU(3)V is broken due to unequal quark masses, the states in the multiplets are no
longer mass-degenerate and the SU(3) Casimirs are no longer good quantum numbers.
However, I3 and Y are still conserved and commute with the Hamiltonian, so they
can still be used to label the states. As a consequence, mesons carrying the same I3

and S can mix with each other. This concerns for example the pseudoscalar mesons
{π0, η8, η0} and the vector mesons {ρ0, ω8, ω0} which carry I3 = S = 0: their flavor
wave functions can mix with each other, and the mixed states are those that appear in
the physical spectrum.
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In principle the mixing effect can already be seen from the flavor matrix elements
of the quark mass matrix M. Suppose we could write down an effective Hamiltonian
of the form

H = H0 + M , (3.2.24)

e.g. in the quark model or derived from some effective Lagrangian, where H0 is flavor-
independent and the quark mass operator is

M = (mu |u〉〈u|+md |d〉〈d|+ms |s〉〈s|)⊗ 1
+ 1⊗

(
mu |ū〉〈ū|+md |d̄〉〈d̄|+ms |s̄〉〈s̄|

)
.

(3.2.25)

Applied to the flavor wave functions in Table 3.1, we find

〈π± |M |π±〉 = 〈π0 |M |π0〉 = mu +md ,

〈η0 |M | η0〉 =
2

3
(mu +md +ms) ,

〈η8 |M | η8〉 =
1

3
(mu +md + 4ms) ,

(3.2.26)

where the off-diagonal matrix elements are zero except for

〈η0 |M | η8〉 =

√
2

3
(mu +md − 2ms) ,

〈π0 |M | η8〉 =
1√
2
〈π0 |M | η0〉 =

1√
3

(mu −md) .

(3.2.27)

Because mu ≈ md, isospin symmetry is still approximately realized and the flavor
breaking mostly comes from the strange-quark mass. Hence, the isospin I related to
the Casimir of SU(2) is approximately still a good quantum number, which leaves only
a mixing for η0 and η8.

If we denote the flavor states generically by ψ8 and ψ0 and the mixed ones by ψ and
ψ′, we can define a mixing angle:

(
ψ

ψ′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ψ8

ψ0

)
ideal−−−−−−→ 1√

3

(
1
√

2

−
√

2 1

)(
ψ8

ψ0

)
. (3.2.28)

In the case of ’ideal mixing’ we have cos θ = 1/
√

3, which leads to a separation into
SU(2) flavor wave functions, i.e., one state made of light quarks and another one made
of strange quarks only:

ψ = 1√
2

(uū+ dd̄) , ψ′ = ss̄ . (3.2.29)

These diagonalize the mass matrix,

〈ψ |M |ψ〉 = mu +md , 〈ψ′ |M |ψ′〉 = 2ms , 〈ψ |M |ψ′〉 = 0 , (3.2.30)

and we find

〈ψ |M |ψ〉+ 〈ψ′ |M |ψ′〉 = 〈ψ8 |M |ψ8〉+ 〈ψ0 |M |ψ0〉 = mu +md + 2ms . (3.2.31)

The actual mixing angles in the various meson channels are dynamical effects and have
to be inferred from experiment (or computed by theory).
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Fig. 3.10: Light and strange meson spectrum from the PDG (https://pdglive.lbl.gov).

Experimental spectrum. Now let us compare our expectations with the experimen-
tal spectrum. Fig. 3.10 shows the light meson spectrum from the PDG, where the bars
are the quoted mass ranges. In each JPC channel there are ground states and radial
excitations. Each blob encloses a presumptive ‘nonet’ (i.e., octet plus singlet), where
the states in light (dark) blue are those with I = 0 (I = 1) and the ones in green are
the kaons. The naming scheme is as follows:

PC = −+ : {π, η, η′}J ,
−− : {ρ, ω, φ}J ,

PC = ++ : {a, f, f ′}J ,
+− : {b, h, h′}J ,

(3.2.32)

where the subscript J is dropped for 0−+ and 1−− states. In addition, kaon-like states
with JP = 0+, 1−, 2+, 3−, . . . are denoted by K∗.

A good channel to start with are the vector mesons, since this sets the prototype
regarding expectations. Here we observe

mρ ≈ mω and mφ −mK∗ ≈ mK∗ −mω . (3.2.33)

Suppose we have isospin symmetry (mu = md) and ideal mixing, so that the ω is only
made of u/d quarks and the φ is a pure ss̄ state like in Eq. (3.2.29). If the dynamics
were of the form (3.2.24), where the mass differences are entirely due to the different
strange and u/d masses, then we would find:

mρ = mω = M0 + 2mu ,

mK∗ = M0 +mu +ms ,

mφ = M0 + 2ms .

(3.2.34)

https://pdglive.lbl.gov
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M I S 0−+ 1−− 1+− 0++ 1++

8 1 0 π (138) ρ (770) b1 (1235) a0 (980) a1 (1260)

π (1300) ρ (1450) a0 (1450) a1 (1640)

π (1800) ρ (1700)

8, 1 0 0 η (548) ω (782) h1 (1170) f0 (500) f1 (1285)

η′ (958) φ (1020) h1 (1415) f0 (980) f1 (1420)

η (1295) ω (1420) f0 (1370)

η (1405) ω (1650) f0 (1500)

η (1475) φ (1680) f0 (1710)

φ (2170)

8 1
2
±1 K(495) K∗(892) K1(1270) K∗0 (700) K1(1400)

K∗(1410) K∗0 (1430)

K∗(1680)

M I S 2++ 2−+ 3−− 4++ 1−+

8 1 0 a2 (1320) π2 (1670) ρ3 (1690) a4 (1970) π1(1400)

a2 (1700) π2 (1880) π1(1600)

8, 1 0 0 f2 (1270) η2 (1645) ω3 (1670) f4 (2050)

f ′2 (1525) η2 (1870) φ3 (1850)

f2 (1950)

f2 (2010)

f2 (2300)

f2 (2340)

8 1
2
±1 K∗2 (1430) K2(1770) K∗3 (1780) K∗4 (2045)

K2(1820)

Table 3.2: Well-established light and strange mesons in terms of JPC , isospin I and
strangeness S (PDG 2020, https://pdglive.lbl.gov). Mesons with I = S = 0 belonging
to different multiplets (M = 1 or 8) can mix with each other, and in principle also the neutral
members of the I = 1 states, so in these cases an identification with flavor-octet or singlet states
is not possible. Note also that C parity is only a good quantum number for neutral mesons.

https://pdglive.lbl.gov
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M0 is some flavor-independent mass that depends on JPC and the radial quantum
number (otherwise they would be the same for each multiplet). Then Eq. (3.2.33) with
the values from Table 3.2 yields ms −mu ≈ 120 MeV, and we have the relation

mω +mφ = 2mK∗ (3.2.35)

which is realized to good extent in nature. Such empirical mass formulas are called
Gell-Mann-Okubo relations.

In any case, for vector mesons ideal mixing seems to be well realized since the masses
of {ρ, ω} → K∗ → φ differ roughly by one unit of the strange-quark mass. As one can
see in Fig. 3.10, the pattern is (to a lesser extent) still visible in the 1+−, 1++, 2++

and some other channels, but there are two channels where the mass ordering does not
work at all: the pseudoscalars 0−+ and the scalars 0++. Apparently there are further
mechanisms at play to which we turn now.

No parity doublets. In the chiral limit mu = md = ms = 0 the Lagrangian is
invariant under a SU(3)V ×SU(3)A chiral symmetry. In that case all mesons within a
given JPC multiplet would become mass-degenerate, and we expect parity doublets
for mesons with same J but different P . Suppose |λ〉 is an eigenstate of the Hamiltonian
with positive parity, so that

H |λ〉 = E |λ〉 , UP |λ〉 = +|λ〉 . (3.2.36)

Because the axial charge switches sign under parity,

UP QA U
−1
P =

∫
d3xUP ψ

†
α(x)U−1

P (γ5)αβ UP ψβ(x)U−1
P

=

∫
d3xψ†(t,−x) γ0 γ5 γ

0 ψ(t,−x)

= −
∫
d3xψ†(x) γ5 ψ(x) = −QA ,

(3.2.37)

the state |λ′〉 = QA |λ〉 carries negative parity:

UP |λ′〉 = UP QA |λ〉 = −QA UP |λ〉 = −|λ′〉 . (3.2.38)

If chiral symmetry holds, the axial charge commutes with the Hamiltonian, [QA, H] = 0,
and therefore |λ′〉 is an eigenstate with the same mass:

H |λ′〉 = H QA |λ〉 = QAH |λ〉 = E |λ′〉 . (3.2.39)

Thus, chiral symmetry entails that the masses of the pseudoscalars (0−+) are degenerate
with the scalars (0++), vector mesons (1−−) with axialvectors (1+−), and so on.

Now, the three-flavor chiral symmetry is explicitly broken because ms � mu ≈ md,
but the two-flavor SU(2)V × SU(2)A symmetry should still approximately work since
u and d quarks are almost massless. Hence we should still see remnants of this pattern
in the spectrum. We do not, though: the pion is almost massless in contrast to its
scalar partner and the vector mesons are much lighter than the axialvector ones.
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On the other hand, the fact that SU(2)V still works out well (mesons with same
isospin I have about the same mass) tells us that something is wrong with the SU(Nf )A
part. Combined with the unnaturally light pseudoscalar mesons, these are the typical
symptoms of a spontaneous symmetry breaking of SU(Nf )A, which would produce
N2
f − 1 massless Goldstone bosons in the chiral limit. The three pions are indeed

almost massless (mπ ≈ 140 MeV); the kaons are heavier but they also contain one
strange quark, so they should feel the impact of explicit chiral symmetry breaking
more strongly than the pions.

In Sec. 4.2 we will derive the Gell-Mann-Oakes-Renner relation, which states that
the squared pseudoscalar meson masses are proportional to the quark masses. Based
on this, we would interpret matrix elements such as 〈π|M |π〉 = mu +md to be propor-
tional to m2

π instead of mπ (this becomes explicit in chiral perturbation theory). With
Eq. (3.2.31), the analogue of the Gell-Mann-Okubo relation (3.2.35) then becomes

m2
η +m2

η′ = m2
η0

+m2
η8

= 2m2
K . (3.2.40)

η − η′ mixing. If chiral symmetry is indeed spontaneously broken, it should break all
axial symmetries, SU(3)A and U(1)A. Hence we would expect nine Goldstone bosons,
including the pions, the kaons and both the η8 and η0. Suppose we had ideal mixing:
then η and η′ would be the analogues of ω and φ in the vector channel,

η = 1√
2

(uū+ dd̄) , η′ = ss̄ , (3.2.41)

where the η is mass-degenerate with the pion and the η′ (as a pure ss̄ state) would
acquire mass due to the explicit chiral symmetry breaking, similarly to the kaons. As-
suming that Eq. (3.2.40) holds, then with mη = mπ we expect to find mη′ ∼ 690 MeV.
Going away from ideal mixing, the masses of η and η′ should move in opposite direc-
tions: if mη > mπ, we should find mη′ . 690 MeV. However, this is not realized at
all: the η is heavier than the kaon (mη ≈ 550 MeV) and the η′ mass is almost twice as
large (mη′ ≈ 960 MeV).

This argument and other ones lead us to believe that the U(1)A symmetry may not
have been realized to begin with. It is still satisfied by the QCD Lagrangian in the
chiral limit, but the classical symmetry is anomalously broken at the quantum level
because it does not survive the quantization — this is the U(1)A anomaly. We already
anticipated in Eq. (3.1.54) that the divergence of the axial current picks up an extra
term. If we work out Eq. (3.1.143) in the isosinglet case, we obtain

fη0m
2
η0

= 2
mu +md +ms

3
rη0 +

g2Nf

(4π)2
〈0| F̃µνa (0)F aµν(0) |η0〉 . (3.2.42)

Even if we set all quark masses to zero, the right-hand side of this equation remains
nonzero and therefore also the η0 remains massive in the chiral limit. Through a mixing
with η8, the extra term contributes to both η and η′ masses. Another manifestation of
this is the Witten-Veneziano relation, where χT is the so-called topological suscep-
tibility:

m2
η +m2

η′ = 2m2
K +

4Nf χT
f2
π

. (3.2.43)
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Missing exotics. Another observation in Fig. (3.10) is that not all JPC quantum
numbers appear: The ‘exotic’ quantum numbers 0−−, 0+−, 1−+ and 2+− are absent
from the light-meson spectrum, with the exception of the higher-lying π1(1400) and
π1(1600) in the 1−+ channel.

The absence of exotic mesons can be understood from the nonrelativistic quark
model. So far we have labeled qq̄ states according to their JPC eigenvalues. Now
assume that the total spin S of the qq̄ pair (S = 0 or S = 1) and its intrinsic orbital
angular momentum L = 0, 1, 2, . . . are also good quantum numbers. Then from the
angular-momentum addition rules we have |L− S| ≤ J ≤ L+ S, and we can motivate
the following two relations:

P = (−1)L+1 and C = (−1)L+S . (3.2.44)

The first arises from the observation that a qq̄ pair has intrinsic parity −1 and its spa-
tial wave function has parity (−1)L; parity is multiplicative, hence the factor (−1)L+1.
Charge conjugation exchanges quark and antiquark, so the value of C can be deduced
by exchanging q ↔ q̄ and then interchanging their positions and spins. The sym-
metry of the spin states is (−1)S+1 because S = 0 is antisymmetric (| ↑↓〉 − | ↓↑〉)
and S = 1 symmetric (|↑↑〉, |↑↓〉 + |↓↑〉, |↓↓〉). The factor (−1)L is as before, and
a minus sign comes from interchanging the fermions. The combined operation gives
C = −(−1)L (−1)S+1 = (−1)L+S .

The first relation above says that states with alternating L have alternating parity,
and the second one entails that once L and S are specified, C (and thus JPC) is fixed
as well. These rules are quite efficient for cataloguing the possible JPC combinations:

� L = 0 are orbital ground states (s waves) and should therefore correspond to the
lightest mesons. According to (3.2.44) they must have negative parity. S = 0
gives us the pseudoscalars 0−+; from S = 1 we obtain the vector mesons 1−−.

� L = 1 are orbital excitations (p waves) with positive parity. From S = 0 we
obtain the axialvectors 1+− and from S = 1 we get scalar (0++), axialvector
(1++) and tensor mesons (2++).

� From L = 2 (d waves) we obtain further vectors (1−−) plus states with J = 2
and J = 3, and so on for higher L.

The resulting mass ordering is shown in Fig. 3.11. Pseudoscalars and vectors are the
lightest mesons because they are in an orbital s wave. Since they carry different quark
spin S, their mass splitting is generated by spin-spin interactions between quark and
antiquark. This is called ‘hyperfine splitting’ because of its analogy to the hydrogen
atom, where the hyperfine structure is caused by the coupling between electron and
proton spin. All other mesons are orbitally excited because they carry higher L. For
the lowest-lying states we should thus expect a mass pattern

{0−+} < {1−−} < {1+−} . {0++, 1++, 2++} . . . . (3.2.45)

which is also how we arranged the columns in Fig. 3.10. Also frequently used is the
spectroscopic notation 2S+1LJ with L = S, P,D, F, . . . , where this becomes

{1S0} < {3S1} < {1P1} . {3P0,
3P1,

3P2} . . . . (3.2.46)
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S·L

= −, P= 0L

= 1S

= 0S

S·S

S·S

+=, P= 1L
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−−1

−+1

++0

++1

++2

= 1S

= 0S

Fig. 3.11: Expected JPC level ordering for mesons.

Interestingly, the analysis forbids exotic quantum numbers 0−−, 0+−, 1−+ and 2+−.
If such states were observed, we would then conclude that they are not made of qq̄
but something else. The only known examples in the light-meson spectrum are the
π1(1400) and π1(1600) with 1−+. They are candidates for hybrid mesons, i.e., states
with valence quarks and gluons, because the combination qq̄g produces the quantum
numbers 1−+ naturally (among others). From the general formula (3.1.121) we could
look for hybrid mesons in higher n-point functions with gluonic content or, equivalently,
current correlators of the form

〈0|Tj(x)j(y)|0〉 e.g. with j(x) = ψ(x) /Dψ(x) , (3.2.47)

where ψ /Dψ is the simplest gauge-invariant combination that involves gluon fields.
Such calculations are being done in lattice QCD and they find indeed additional states
which do not show up when using ψψ operators only.2

On the other hand, Eq. (3.1.121) states that a meson pole will appear in any correla-
tion function that has non-zero overlap with the state. It turns out that Bethe-Salpeter
wave functions of the form (3.1.136) do not vanish for exotic quantum numbers even
though they only contain quark and antiquark operators. As a consequence, poles with
exotic quantum numbers can also show up in the quark-antiquark four-point function
in Fig. 3.3. This goes back to the observation that the relations (3.2.44) are nonrela-
tivistic, because P and C are conserved quantum numbers whereas L and S are not.
Only J corresponds to a Casimir operator of the Poincaré group; S and L are not
Poincaré-invariant and can mix in different reference frames. This is also why only
JPC should be used to label multiplets. For example, from the nonrelativistic analysis
above the pion should carry L = 0, but the pion’s relativistic BSWF in Eq. (3.1.138)
also contains L = 1 components, namely the tensors q/ and [q/, /p] which depend on the
relative momentum q and thus correspond to p waves in the pion’s rest frame. (This
is analogous to the ‘lower components’ in Dirac spinors which come about through
relativity.) Similary, at the level of BSWFs, exotic mesons are not generally forbidden
as qq̄ states but merely do not survive the non-relativistic limit.

2J. J. Dudek, Phys.Rev.D 84 (2011) 074023, arXiv:1106.5515 [hep-ph].

https://arxiv.org/abs/1106.5515
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√
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Scalar mesons. Another curious case in Fig. 3.10 is the lowest-lying multiplet of scalar
0++ mesons. They do not fit into the mass ordering (3.2.45), which would be (roughly)
realized if we simply removed them from the spectrum. Also the mass ordering inside
the multiplet is far from ‘ideal’: the isosinglet f0(500) or σ meson is the lightest state,
followed by the K∗0 (700) or κ and the almost degenerate a0(980) and f0(980). This does
not make much sense given the flavor content: why would a0 and f0 be mass-degenerate
if one is made of light quarks and the other is the ss̄ state?

Such arguments initiated the idea that the 0++ ground states may not be actual
qq̄ states but rather tetraquarks in the form of diquark-antidiquark combinations.3

Two quarks can form a diquark through 3⊗ 3 = 3⊕ 6, cf. Fig. 3.9, where it turns out
that the color-antitriplet channel 3 is attractive but the sextet channel 6 is repulsive.
Hence one can write the combination (3.2.3) also differently:

(3⊗ 3)⊗ (3⊗ 3) = (3⊕ 6)⊗ (3⊕ 6) = (3⊗ 3)⊕ · · · = 1⊕ 8⊕ . . . (3.2.48)

In flavor space, the antitriplet 3 corresponds to antisymmetric flavor wave functions
[ud] = ud− du, [us] and [ds] (up to normalization). Combining a diquark with an an-
tidiquark then produces a singlet and an octet, except with different flavor content: The
isoscalar σ is made of light quarks only, whereas both a0 and f0 contain ss̄ which would
make them mass-degenerate. Since the σ and κ lie above the ππ and Kπ thresholds,
respectively, they can then simply fall apart without the need for exchanging gluons
which would turn them into broad resonances. In fact, the large decay width of the σ
has prohibited a precise determination of its pole location until recently (see Fig. 3.12).
There has been a long history of support for the non-qq̄ nature of the light scalar
mesons, although their internal decomposition (diquark-antidiquark, meson-meson, or
possible qq̄ admixture) is still under debate.4

3R.L. Jaffe, Phys. Rev. D 15, 267 (1977).
4For a review, see J. Pelaez, Phys. Rept. 658, 1 (2016), arXiv:1510.00653 [hep-ph].

https://arxiv.org/abs/1510.00653
https://arxiv.org/abs/1510.00653
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Mesons with charm. Let us turn to the spectrum of heavy mesons. In order to
include charm quarks, we should start from the group SU(4)f which has 15 generators.
The SU(4)f symmetry of the Lagrangian is badly broken by the large charm-quark
mass, but like in the three-flavor case discussed in Sec. 3.1.1 the diagonal currents
corresponding to the three Cartan generators are still conserved. They are related to
the quantum numbers I3, Y and C (charm) which label the states (Fig. 3.13). On top
of the light and strange sector, this leads to additional D and Ds mesons:

I = 1
2 , S = 0 , C = ±1 : {D+, D0, D̄0, D−} = {cd̄, cū, uc̄, dc̄} , (3.2.49)

I = 0 , S = C = ±1 : {D+
s , D

−
s } = {cs̄, sc̄}. (3.2.50)

The separation into different multiplets (4⊗ 4 = 1⊕ 15) is not useful because due to
the broken symmetry the states in the center will mix; ideal mixing amounts to the
usual separation into 1√

2
(uū± dd̄), ss̄ and cc̄.

Let us focus on the charmonium spectrum consisting of c̄c (Fig. 3.14). The first
charmonium state to be discovered was the J/ψ, which owes its double name to the
simultaneous discovery by two independent collaborations in November 1974 (‘Novem-
ber revolution’). The J/ψ and its excitations are vector particles with JPC = 1−−, so
they can be directly produced from a photon in e+e− collisions. The naming scheme
for the remaining JPC channels is as follows:

PC = −+ : ηc , −− : ψ , ++ : χc , +− : hc . (3.2.51)

Since charm quarks are heavy (mc � ΛQCD), relativity and chiral symmetry no
longer play a major role, which are the two main effects that complicate the light meson
spectrum. Thus, effective theories such as heavy-quark effective theory (HQET)
and nonrelativistic QCD (NRQCD) can be used to study heavy-quark physics. In
fact, already non-relativistic quark potential models provide an efficient description of
the charmonium spectrum.
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Exotics. In this sense, the heavy-quark sector is also a much cleaner environment for
studying exotic mesons. Following a series of discoveries over the past two decades,
a number of exotic meson candidates in the charmonium region (the ‘XY Z states’) are
experimentally well-established by now (Fig. 3.14):

� The χc1(3872) or X(3872) was first reported by Belle in 2003 and the first exotic
charmonium-like state to be found. Its mass is indistinguishable from the D0D̄∗0

threshold and it has a very narrow width (< 1.2 MeV).

� The ψ(4230) is one of several exotic candidates in the 1−− vector channel, which
are produced in e+e− collisions.

� The Zc states with 1+− carry charge and are thus manifestly exotic since their
minimal quark content is cc̄ud̄, which provides evidence for tetraquarks.

The internal structure of four-quark states is under debate. In principle, systems made
of nn̄cc̄, where n stands for light quarks, could cluster into

� meson molecules (nc̄)(n̄c) made of two heavy-light mesons, which interact by
long-range color-singlet forces such as light meson exchanges;

� compact diquark-antidiquark systems (nc)(n̄c̄) made of two colored diquarks;

� hadrocharmonia (nn̄)(cc̄) with light mesons that ‘orbit’ around a heavy core.

Of course, quantum field-theoretically all these configurations can mix together as well
as with ordinary cc̄ states, but it is conceivable that certain configurations are dominant
for particular states, like for example the proximity to a threshold is a typical signal
for a molecule.

https://pdglive.lbl.gov
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3.2.2 Baryons

Let us come to the baryon sector. Baryons are fermions, so their angular momentum
takes half-integer values: JP = 1/2±, 3/2±, 5/2±, and so on. If we start again with three
flavors u, d and s, then because of

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 (3.2.52)

in principle each JP channel can contain SU(3) flavor octets, decuplets and singlets.
These are shown in Fig. 3.7, and they can come in the form of ground states and radial
excitations. As before, SU(3) flavor breaking entails that baryons with the same I3

and strangeness S can mix.
The construction of the flavor wave functions is a bit different from the case of mesons

since we must combine three quarks instead of a quark and an antiquark. What helps
is that baryons satisfy the Pauli principle, i.e., in the flavor-symmetric limit their total
(Bethe-Salpeter) wave function

Ψ = Dirac× Flavor× Color (3.2.53)

must be totally antisymmetric under exchange of any two quarks. Here, ‘Dirac’ is
a shorthand for the full spatial and spin (or momentum and spin) contribution that
transforms under the Lorentz group, or the rotation group in the non-relativistic case.
We can then arrange each part in irreducible representations of the permutation group
S3, with definite symmetry, and figure out in the end which symmetry states are allowed
in the combination.

For example concerning the color part, the singlet in 3⊗ 3⊗ 3 = 1⊕ . . . is totally
antisymmetric (see further below). If we use the quark color basis states C1 = R,
C2 = G and C3 = B, then the color wave function is given by εijk:

RGB +GBR+BRG−GRB −BGR−RBG = εijk CiCj Ck . (3.2.54)

For the flavor part we must also cast the remaining combinations in Eq. (3.2.52) in
permutation-group multiplets, i.e., we must classify them into simultaneous irreducible
representations of SU(3) and the permutation group S3.
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Permutation gruop S3. The permutation group S3 consists of 3! = 6 elements. The
group manifold can be visualized by the Cayley graph in Fig. 3.15: any permutation of
an object ψ123 can be reconstructed from a transposition P12 and a cyclic permutation
P123. The former interchanges the indices 1↔ 2 and the latter is a cyclic permutation
1→ 2, 2→ 3, 3→ 1. The group elements acting on ψ123 are given by

1 ,

P13 P12 = P123 ,

P23 P12 = P 2
123 ,

P12 ,

P23 = P12 P123 ,

P13 = P12 P
2
123 ,

(3.2.55)

for example

P13 ψ123 = P12 P
2
123 ψ123 = P12 P123 ψ231 = P12 ψ312 = ψ321 , (3.2.56)

and they are represented by paths along the Cayley graph.
To find the irreducible representations of S3, we define the combinations

ψ±1 =
ψ123 ± ψ213

2
, ψ±2 =

ψ231 ± ψ132

2
, ψ±3 =

ψ312 ± ψ321

2
. (3.2.57)

You can convince yourself that applying P12 and P123 to them amounts to

P12 ψ
±
i = ±ψ±i , P123 ψ

±
i =

ψ+
j + ψ−j ± (ψ+

k − ψ−k )

2
, (3.2.58)

where {i, j, k} is a cyclic permutation of {1, 2, 3}. If we further define

S = ψ+
1 + ψ+

2 + ψ+
3 , A = ψ−1 + ψ−2 + ψ−3 , (3.2.59)

then we see that

P12 S = S , P123 S = S , P12A = −A , P123A = A . (3.2.60)

Since any permutation can be reconstructed from P12 and P123, the combinations S and
A only transform into themselves, so they form irreducible one-dimensional subspaces
under the permutation group. S is invariant under permutations, so it is a symmetric
singlet. The antisymmetric singlet (‘antisinglet’) A is totally antisymmetric under
exchange of any two indices and thus picks up a minus sign under a transposition. The
remaining four combinations can be grouped into doublets,

D1 =

[
ψ−2 − ψ−3

1√
3

(
ψ+

2 + ψ+
3 − 2ψ+

1

)
]
, D2 =

[
− 1√

3

(
ψ−2 + ψ−3 − 2ψ−1

)

ψ+
2 − ψ+

3

]
, (3.2.61)

which also transform into themselves and therefore define a two-dimensional subspace:

P12Dj = MT
12Dj , P123Dj = MT

123Dj . (3.2.62)

The representation matrices (MT denotes the matrix transpose) are given by

M12 =

(
−1 0

0 1

)
, M123 =

1

2

(
−1 −

√
3√

3 −1

)
, (3.2.63)
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from where all other ones can be reconstructed through Eq. (3.2.55), e.g.:

P23Dj = P12 P123Dj = P12

(
MT

123Dj
)

= MT
123 P12Dj

= MT
123 M

T
12Dj = (M12 M123)TDj .

(3.2.64)

The upper (lower) components of the doublets are antisymmetric (symmetric) under
transpositions P12 and we denote them by

Dj =

[
aj
sj

]
. (3.2.65)

In the language of Young diagrams (see Appendix A.3), the irreducible representations
of S3 correspond to

S Dj A

In practice we will also need the tensor products of S3 multiplets. Given two sets
of singlets S, S ′, antisinglets A, A′ and doublets D = [a, s], D′ = [a′, s′], there are 16
possible combinations

{S, A, a, s} × {S ′, A′, a′, s′} (3.2.66)

which we can again arrange into multiplets. Clearly, the products of two singlets (S S ′)
or antisinglets (AA′) must be singlets. The inner product D · D′ of two doublets is
also a singlet and invariant under any permutation because the representation matrices
M ∈ {M12, M123} are orthogonal:

(MTD) · (MTD′) = Dk (MMT)klD′l = D · D′ . (3.2.67)

Therefore, there are three possibilities for constructing singlets in the product space:

S S ′, AA′, D · D′ = aa′ + ss′ . (3.2.68)

Antisinglets are obtained from

S A′, AS ′, D ∧D′ := as′ − sa′ , (3.2.69)

where we defined an antisymmetric wedge product, and doublets are formed by

S D′,
S ′D,

A (εD′) ,
A′ (εD) ,

D ∗ D′ :=
[
as′ + sa′

aa′ − ss′
]
, (3.2.70)

where

ε =

(
0 1
−1 0

)
⇒ εD =

[
s
−a

]
. (3.2.71)

This covers all 16 possibilities. You can easily check this using Eqs. (3.2.60) and (3.2.62)
written down for a, s, a′ and s′: the singlets stay invariant under permutations, the
antisinglets pick up a minus sign for odd permutations, and the doublets transform
under M12 and M123.
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uuu uud ddu ddd uus uds dds ssu ssd sss

S ∆++ ∆+ ∆0 ∆− Σ+ Σ0 Σ− Ξ0 Ξ− Ω−

D1 p n Σ+ Σ0 Σ− Ξ0 Ξ−

D2 Λ0

A Λ0

Table 3.3: SU(3)f flavor wave functions for baryons.

Flavor wave functions for baryons. Suppose u, d and s denote flavor vectors that
transform under the fundamental representation of SU(3), for example in a Cartesian
basis. Combining three of them gives 3×3×3 = 27 possible combinations, which would
transform under the 27-dimensional reducible representation of SU(3). The irreducible
representations contained in 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 differ by their symmetry, so
we must find the combined irreducible representations of SU(3) and S3.

To construct flavor wave functions from the tensor products of three flavor vectors,
e.g. for a baryon with flavor content uud such as the proton or the ∆+, we write

ψ123 = uiujdk = (uud)ijk ,

ψ231 = ujukdi = (duu)ijk ,

ψ312 = ukuidj = (udu)ijk ,

ψ213 = ujuidk = (uud)ijk ,

ψ132 = uiukdj = (udu)ijk ,

ψ321 = ukujdi = (duu)ijk .

(3.2.72)

The combinations in Eq. (3.2.57) become

ψ+
1 = uud , ψ−1 = 0 , ψ±2 = ±ψ±3 = ±ud± du

2
u , (3.2.73)

so we arrive at the multiplets

S(uud) = uud+ udu+ duu ,

A(uud) = 0 ,

D1(uud) =

[
duu− udu

1√
3

(udu+ duu− 2uud)

]
,

D2(uud) = 0 .

(3.2.74)

Apart from overall normalization, S(uud) is the flavor wave function of the ∆+ and
D1(uud) is that of the proton. Had we started from ddu instead of uud, we would
have obtained the wave functions for the ∆0 and the neutron (replace u ↔ d in the
equation above). The combination uuu returns only a singlet (∆++), and from uds we
get everything: S, A and two doublets.

If we take all 10 combinations with different flavor content into account (uuu, ddd,
sss, uud, uus, ddu, dds, ssu, ssd, uds), the permutation group gives us

� 10 singlets, which form the flavor decuplet with ∆, Σ, Ξ and Ω,

� 8 doublets which form the flavor octet, including proton, neutron, Σ, Ξ and Λ,

� and one antisinglet from uds, the flavor singlet for Λ.

These are just the irreducible representations of SU(3)f : decuplet, octet and singlet.
The resulting states are collected in Table 3.3 and written explicitly in Table 3.4.
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I I3 S

uud p 1/2 1/2 0 1√
2

[
udu− duu

− 1√
3

(udu+ duu− 2uud)

]

udd n 1/2 −1/2 0 1√
2

[
udd− dud

1√
3

(dud+ udd− 2ddu)

]

uus Σ+ 1 1 −1 1√
2

[
usu− suu

− 1√
3

(usu+ suu− 2uus)

]

uds Σ0 1 0 −1 1
2

[
sud− usd+ sdu− dsu

1√
3

(sud+ usd+ sdu+ dsu− 2uds− 2dus)

]

dds Σ− 1 −1 −1 1√
2

[
dsd− sdd

− 1√
3

(dsd+ sdd− 2dds)

]

uds Λ0 0 0 −1 1
2

[
1√
3

(2uds− 2dus+ usd− dsu+ sdu− sud)

usd− dsu+ sud− sdu

]

uss Ξ0 1/2 1/2 −2 1√
2

[
uss− sus

1√
3

(sus+ uss− 2ssu)

]

dss Ξ− 1/2 −1/2 −2 1√
2

[
dss− sds

1√
3

(sds+ dss− 2ssd)

]

uuu ∆++ 3/2 3/2 0 uuu

uud ∆+ 3/2 1/2 0 1√
3

(uud+ udu+ duu)

udd ∆0 3/2 −1/2 0 1√
3

(udd+ dud+ ddu)

ddd ∆− 3/2 3/2 0 ddd

uus Σ+ 1 1 −1 1√
3

(uus+ usu+ suu)

uds Σ0 1 0 −1 1√
6

(uds+ sud+ dsu+ dus+ usd+ sdu)

dds Σ− 1 −1 −1 1√
3

(dds+ dsd+ sdd)

uss Ξ0 1/2 1/2 −2 1√
3

(uss+ sus+ ssu)

dss Ξ− 1/2 −1/2 −2 1√
3

(dss+ sds+ ssd)

sss Ω− 0 0 −3 sss

uds Λ0 0 0 −1 1√
6

(uds+ sud+ dsu− dus− usd− sdu)

Table 3.4: SU(3)f flavor wave functions for octet, decuplet and singlet baryons.
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Including charm as a fourth flavor, we can immediately extend the construction to
SU(4)f which would give us 20 singlets, 20 doublets and 4 antisinglets:

4⊗ 4⊗ 4 = 20S ⊕ 20MA
⊕ 20MS

⊕ 4A . (3.2.75)

In the SU(2)f case, on the other hand, we get four singlets (the four ∆ baryons) and
two doublets (proton and neutron):

2⊗ 2⊗ 2 = 4S ⊕ 2MA
⊕ 2MS

. (3.2.76)

If we identified SU(2) with spin instead of flavor, this would give us the three-spinor
wave functions, e.g. the four symmetric ones:

|↑↑↑〉, 1√
3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉) , 1√
3

(|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉) , |↓↓↓〉. (3.2.77)

Full baryon wave function. The remaining question is what the Dirac part in
Eq. (3.2.53) looks like. From the above analysis we conclude that even without knowing
its explicit form, we can also arrange it into permutation group multiplets S, A, D1

and D2 to write

Ψ = {S, A, D1, D2}D × {S, A, D1, D2}F ×AC
!

= Atotal . (3.2.78)

Because color is antisymmetric, the Dirac-flavor part must be symmetric. This leaves
the three possible combinations in Eq. (3.2.68):

Atotal =





(DD · DF )AC (octet) ,

(SD SF )AC (decuplet) ,

(ADAF )AC (singlet) .

(3.2.79)

That is, flavor octet baryons come with a mixed-symmetric Dirac part, decuplet baryons
with a symmetric and flavor-singlet baryons with an antisymmetric Dirac part.

In principle the Dirac part can be constructed from the Bethe-Salpeter wave function

〈0|Tψα(x1)ψβ(x2)ψγ(x3) |λ〉 (3.2.80)

in analogy to Eqs. (3.1.136–3.1.137): In momentum space it has the structure

Ψαβγ(p1, p2, p3) =

N∑

i=1

fi(q
2
1, q

2
2, q1 ·p, q2 ·p, q1 · q2, p

2 = m2
λ) τi(p1, p2, p3)αβγ , (3.2.81)

where p is the onshell momentum of the baryon, q1 and q2 are the two relative momenta
in the system, and the τi form a linearly independent and complete tensor basis. These
can be grouped into S3 multiplets, so that the symmetry properties are inherited by
the dressing functions fi.
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It is instructive to go back to the nonrelativistic quark model, like we did in the
discussion of mesons below Eq. (3.2.44). In that case JP , L and S are good quantum
numbers. The Dirac parts are taken to be the direct product of O(3) spatial and SU(2)
spin wave functions. The combination of three spins 1

2 ⊗ 1
2 ⊗ 1

2 in a three-quark qqq
state only permits total spin S = 1

2 or S = 3
2 . The corresponding wave functions are

those in Eq. (3.2.77), i.e., there are four permutation-group singlets SS (subscript S
for spin) with S = 3/2 and two doublets DS with spin S = 1/2.

The SU(2) spin states (DS , SS) are then combined with the SU(3) flavor states
(DF , SF , AF ) into spin-flavor multiplets according to Eqs. (3.2.68–3.2.70):

� 56-plet SSF : DS · DF → 2× 8 = 16 spin-flavor states,

SS SF → 4× 10 = 40,

� 70-plet DSF : DS ∗ DF → 2× 8 = 16,

DS SF → 2× 10 = 20,

(εDS)AF → 2× 1 = 2,

SS DF → 4× 8 = 32,

� 20-plet ASF : DS ∧ DF → 2× 8 = 16,

SS AF → 4× 1 = 4.

This is the ‘SU(6)-symmetric’ quark model classification, since SU(2)spin×SU(3)flavor ∼
SU(6)spin-flavor and in SU(6) one has

6⊗ 6⊗ 6 = 56S ⊕ 70MA
⊕ 70MS

⊕ 20A . (3.2.82)

Keep in mind, however, that different spin polarizations do not correspond to different
particles: only the number of states in a flavor multiplet counts the number of baryons
we expect to find in the spectrum.

The spatial wave functions can depend on the total coordinate R and the relative
(Jacobi) coordinates ρ and λ:

R =
x1 + x2 + x3√

3
, ρ =

x1 − x2√
2

, λ =
x1 + x2 − 2x3√

6
. (3.2.83)

After removing the center-of-mass motion induced by R, the spatial wave functions
φ(ρ,λ) only depend on the relative coordinates. These can be arranged in a permutation-
group doublet, since from Eq. (3.2.62) one can verify

P12

[
ρ

λ

]
= MT

12

[
ρ

λ

]
, P123

[
ρ

λ

]
= MT

123

[
ρ

λ

]
. (3.2.84)

From a doublet D one can construct further multiplets such as the O(3) invariants

S = D · D = ρ2 + λ2 , D′ = D ∗ D =

[
2ρ · λ
ρ2 − λ2

]
, (3.2.85)

and in this way also the spatial wave function φ(ρ,λ) can produce permutation-group
singlets, doublets and antisinglets.



114 Hadrons

The spatial wave functions are usually set up in a spherical harmonic oscillator basis

φL(ρ,λ) =
∑

nρ,lρ,nλ,lλ

cLnρlρnλlλ
[
φnρlρ(ρ)⊗ φnλlλ(λ)

]
L
, (3.2.86)

where both internal motions support radial (nα > 0) and orbital (lα > 0) excitations.
With n = nρ + nλ and l = lρ + lλ, the total orbital angular momentum is constructed
from L = |lρ − lλ| ... lρ + lλ and the parity of the state is P = (−1)l. This yields
excitations bands for the ‘band quantum number’ N = 2n + l corresponding to the
same energy. The resulting spatial wave functions can be arranged into permutation-
group multiplets SO (subscript O for orbital), DO and AO, which are finally combined
with the spin-flavor wave functions to yield the totally symmetric combinations

SO SSF → SO DS · DF , SO SS SF ,
DO · DSF → DO · (DS ∗ DF ) , DO · (DS SF ) , DO · (εDS)AF , DO · (SS DF ) ,

AOASF → AO (DS ∧ DF ) , AO SS AF .

Since the spatial wave functions carry definite L and P and the spin wave functions
definite S, their combination J = |L−S| . . . L+S determines JP . The resulting states
and their flavor assignments are listed in Table 3.5.

One can see that the ground states (N = 0) correspond to flavor octet baryons

with J = 1
2

+
and decuplet baryons with 3

2

+
. We could have inferred this directly from

Eq. (3.2.79): For ground states the orbital wave functions are spatially symmetric, i.e.,
permutation-group singlets, so the different Dirac multiplets can only come from the
spin. Ground states have L = 0 and thus J = S, so the only possible combinations are

Atotal ∼
{

(DS · DF )AC (J = 1
2

+
, octet) ,

(SS SF )AC (J = 3
2

+
, decuplet) .

(3.2.87)

Because there is no antisymmetric spin wave function AS , the flavor-singlet baryons Λ0

cannot appear as ground states.
What Table 3.5 also shows is that the quark model predicts a lot of states. While

the ‘bands’ for N = 0 and N = 1 can be identified with experimentally known baryons,
already the N = 2 and especially the N = 3 states have not all been observed. This is
the so-called missing resonances problem, which could have several explanations:

� We simply have not found them yet. Excited baryons (generically called N∗) have
traditionally been extracted from Nπ scattering (Nπ → Nπ), but if they did not
strongly couple to Nπ it would be hard to see their peaks in experimental cross
sections (remember Eq. (3.1.121)). Recent photoproduction experiments (e.g.
γN → Nπ) have indeed found new states, but the spectrum as of today is still
quite sparse compared to what the quark model predicts.

� If two quarks inside a baryon clustered to a diquark, this would freeze internal
excitation degrees of freedom and we should see fewer states in the spectrum.

� The assumptions we made (nonrelativistic quark model, harmonic oscillator) are
simply too drastic to provide a realistic description of light baryons.
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N LP O SF S F JP

0 0+ S0 56 1
2

8 1
2

+

3
2

10 3
2

+

1 1− D0 70 1
2

8 1
2

−
, 3

2

−

1
2

10 1
2

−
, 3

2

−

1
2

1 1
2

−
, 3

2

−

3
2

8 1
2

−
, 3

2

−
, 5

2

−

2 0+ S0 56 1
2

8 1
2

+

3
2

10 3
2

+

D0 70 1
2

8 1
2

+

1
2

10 1
2

+

1
2

1 1
2

+

3
2

8 3
2

+

1+ A0 20 1
2

8 1
2

+
, 3

2

+

3
2

1 1
2

+
, 3

2

+
, 5

2

+

2+ S0 56 1
2

8 3
2

+
, 5

2

+

3
2

10 1
2

+
, 3

2

+
, 5

2

+
, 7

2

+

D0 70 1
2

8 3
2

+
, 5

2

+

1
2

10 3
2

+
, 5

2

+

1
2

1 3
2

+
, 5

2

+

3
2

8 1
2

+
, 3

2

+
, 5

2

+
, 7

2

+

N LP O SF S F JP

3 1− S0 56 1
2

8 1
2

−
, 3

2

−

3
2

10 1
2

−
, 3

2

−
, 5

2

−

D0 70 1
2

8 1
2

−
, 3

2

−

1
2

10 1
2

−
, 3

2

−

1
2

1 1
2

−
, 3

2

−

3
2

8 1
2

−
, 3

2

−
, 5

2

−

D0 70 1
2

8 1
2

−
, 3

2

−

1
2

10 1
2

−
, 3

2

−

1
2

1 1
2

−
, 3

2

−

3
2

8 1
2

−
, 3

2

−
, 5

2

−

A0 20 1
2

8 1
2

−
, 3

2

−

3
2

1 1
2

−
, 3

2

−
, 5

2

−

2− D0 70 1
2

8 3
2

−
, 5

2

−

1
2

10 3
2

−
, 5

2

−

1
2

1 3
2

−
, 5

2

−

3
2

8 1
2

−
, 3

2

−
, 5

2

−
, 7

2

−

3− S0 56 1
2

8 5
2

−
, 7

2

−

3
2

10 3
2

−
, 5

2

−
, 7

2

−
, 9

2

−

D0 70 1
2

8 5
2

−
, 7

2

−

1
2

10 5
2

−
, 7

2

−

1
2

1 5
2

−
, 7

2

−

3
2

8 3
2

−
, 5

2

−
, 7

2

−
, 9

2

−

A0 20 1
2

8 5
2

−
, 7

2

−

3
2

1 3
2

−
, 5

2

−
, 7

2

−
, 9

2

−

Table 3.5: Quark-model classification of light and strange baryons up to N ≤ 3.

It is also amusing to think about a world without color. The ∆++ carries three up
quarks (uuu) and has all spins aligned (↑↑↑), which does not yield a totally antisym-
metric wave function — which was historically one of the motivations for introducing
the color degree of freedom. If we wanted to respect the Pauli principle without color,
then Eq. (3.2.69) provides us with the following options:

Atotal =





DD ∧ DF (octet) ,

AD SF (decuplet) ,

SDAF (singlet) .

(3.2.88)

With the SU(2) spin wave functions DS and SS (but no AS) we could still construct
nucleons but not ∆ baryons, at least not as ground states.



116 Hadrons

+

2
1 −

2
1 +

2
1 −

2
1−

2
3+

2
3 −

2
3+

2
3
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M [GeV]

N(1440)
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N(1875)
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∆(1900)

∆(1700)
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1.2
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1.6
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Fig. 3.16: Light baryon spectrum for JP = 1
2

±
and 3

2

±
from the PDG.

Light baryons. Let us have a look at the experimental spectrum of light and strange
baryons (Table 3.6). In contrast to mesons, the naming scheme is the same for different
JP channels, i.e., all states with I = 1

2 and S = 0 are called nucleons, all states with
I = 3

2 and S = 0 are called ∆ baryons, etc. From the point of view of the Poincaré
group, each JP channel contains one ‘ground state’ plus radial excitations. Due to
SU(3)V breaking, multiplets with the same I3 and S can mix. This affects the baryons
containing strange quarks (the hyperons): the Λ states (uds) can be mixtures of 8
and 1 and the Σ and Ξ states can be mixtures of 8 and 10.

The well established states are the ground states that are also predicted by the quark
model: the octet baryons with JP = 1

2

+
and the decuplet baryons with JP = 3

2

+
. Their

lightest members are the nucleon (proton and neutron) and the ∆(1232) resonance.
Since they carry different three-quark spin S (see Table 3.5), their mass difference
of about 300 MeV can be understood as a hyperfine splitting due to spin-dependent
interactions. The ∆ resonance decays almost exclusively into Nπ and thus appears as
a prominent peak in Nπ scattering.

The N = 1 band in Table 3.5 can still be identified with experimental states, e.g. in
the nucleon channel the (1

2 ,8) states would correspond to the N(1535) and N(1520),
where the former is the parity partner of the nucleon (see also Fig. 3.16). For the higher-
lying states the quark-model identification becomes more problematic: the N = 2 band
already overpredicts the positive-parity spectrum for 3

2

+
states, and the N = 3 band

contains over 20 negative-parity states which have not been seen in experiments.
An open question concerns the Roper resonance N(1440), which is the first radial

excitation of the nucleon but has properties that are incompatible with the quark model;
for example, its mass is lower than that of the N(1535). The Roper has been suggested
to be a dynamically generated resonance, in the sense that the interactions between
nucleons and pions could generate additional states on top of qqq configurations. This
ties in with the ‘meson cloud’ picture, where baryons are thought to be surrounded
by clouds of light pseudoscalar mesons which change their properties. A similar case
is the Λ(1405) with JP = 1

2

−
which is also not well described by quark models. From

a microscopic point of view, such effects would signal a multiquark admixture for light
baryons similarly to the meson spectrum. For these reasons, a thorough understanding
of light baryons from QCD remains an open problem.
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M I S 1
2

+ 3
2

+ 5
2

+ 7
2

+ 9
2

+ 11
2

+ 13
2

+

8 1
2

0 N (939) N (1720) N (1680) N (1990) N (2220) N (2700)

N (1440) N (1900) N (1860)

N (1710) N (2000)

N (1880)

N (2100)

N (2300)

10 3
2

0 ∆ (1910) ∆(1232) ∆(1905) ∆(1950) ∆(2300) ∆(2420)

∆ (1600) ∆(2000)

∆ (1920)

8, 1 0 −1 Λ(1116) Λ (1890) Λ (1820) Λ (2085) Λ (2350)

Λ (1600) Λ (2110)

Λ (1810)

8, 10 1 −1 Σ(1193) Σ(1385) Σ(1915) Σ(2030)

Σ (1660)

Σ (1880)

8, 10 1
2
−2 Ξ(1318) Ξ (1530)

10 0 −3 Ω(1672)

M I S 1
2

− 3
2

− 5
2

− 7
2

− 9
2

− 11
2

− 13
2

−

8 1
2

0 N (1535) N (1520) N (1675) N (2190) N (2250) N (2600)

N (1650) N (1700) N (2060)

N (1895) N (1875) N (2570)

N (2120)

10 3
2

0 ∆ (1620) ∆ (1700) ∆(1930) ∆(2200) ∆(2400) ∆(2750)

∆ (1900) ∆ (1940)

8, 1 0 −1 Λ (1380) Λ (1520) Λ (1830) Λ (2100)

Λ (1405) Λ (1690)

Λ (1670)

Λ (1800)

8, 10 1 −1 Σ (1750) Σ (1670) Σ(1775)

Σ (1900) Σ (1910)

8, 10 1
2
−2 Ξ (1690) Ξ (1820)

10 0 −3

Table 3.6: Light and strange baryon spectrum in terms of JP , isospin I and strangeness S
from the PDG 2020 (https://pdglive.lbl.gov). Only established states (two-, three- and
four-star resonances) are included. The ground states are shown in color.

https://pdglive.lbl.gov
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Fig. 3.17: Charmed baryon multiplets in the {C − S,C} plane. The left figure shows the
quark content for each state, where n stands for light quarks.

uuc udc ddc usc dsc ssc ucc dcc scc ccc

S Σ++
c Σ+

c Σ0
c Ξ+

c Ξ0
c Ω0

c Ξ++
cc Ξ+

cc Ω+
cc Ω+

ccc

D1 Σ++
c Σ+

c Σ0
c Ξ+

c Ξ0
c Ω0

c Ξ++
cc Ξ+

cc Ω+
cc

D2 Λ+
c Ξ+

c Ξ0
c

A Λ+
c Ξ+

c Ξ0
c

Table 3.7: SU(3)f flavor wave functions for baryons.

Charmed baryons. The extension of Eqs. (3.2.72–3.2.74) to construct the flavor wave
functions of charmed baryons is straightforward: start with a given quark content like
uuc and work out the multiplets. This produces new singlets, doublets and antisinglets,
which are collected in Table 3.7 and add to the former ones to yield

4⊗ 4⊗ 4 = 20S ⊕ 20MA
⊕ 20MS

⊕ 4A . (3.2.89)

The resulting flavor multiplets are shown in Fig. 3.17 and contain the SU(3) octet,
decuplet and singlet as their bottom levels. As before, because the SU(4)f symmetry
is badly broken, states with the same quark content (the same I3, strangeness S and
number of charm quarks C) will mix.

For singly-charmed baryons, the multiplet partners of the JP = 1
2

+
octet and 3

2

+

decuplet baryons are experimentally established, along with a few other states with
different JP and some whose quantum numbers have not yet been determined. So far
there is evidence for only one doubly charmed Ξ++

cc baryon; presumably these would
have a very different structure from light baryons and resemble a heavy ‘double-star’
system with an attached light ‘planet’.

Pentaquarks? Another type of baryon made of charm quarks was recently observed
by the LHCb collaboration, who found several peaks in the J/ψp spectrum in the
4300 . . . 4500 MeV region. Since this implies a minimal quark content uudcc̄, it would
be the first experimental evidence for pentaquarks. The proximity of those peaks to
the Σc D̄ and Σc D̄

∗ thresholds suggests a molecular explanation in terms of meson-
baryon molecules, in analogy to exotic meson candidates in the charmonium sector.
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