
2.2 Quantization of QCD 11

2.2 Quantization of QCD

So far we have discussed the Lagrangian and action of QCD, Eq. (2.1.29), which define
the classical field theory. What are the consequences of going to the quantum field
theory (QFT)? There are two standard methods to transform the classical action into
a QFT. One is the canonical formalism, where the fields are treated as operators on a
Fock space and canonical (anti-)commutation relations are imposed. The other is the
path-integral formalism where an integral over all fields is performed, which provides an
intuitive picture of how quantum corrections augment the classical field configurations.
Both methods are equivalent and we will use them in combination, depending on what
better suits our needs.

In the following we briefly recall some basic concepts of QFT. For illustration, we
work in a generic theory with one species of fields, φ(x), defined by the classical action
S[φ] =

∫
d4xL(φ, ∂µφ); in QCD, φ would stand for the fields φ ∈ {ψ, ψ̄, Aµa}.

2.2.1 Canonical quantization

Assuming that you have heard a standard QFT course and went through all the ma-
chinery, how would you summarize the basic ideas in a few words? Fortunately, the
formalism behind a QFT requires only a small number of axioms:

Relativity and unitarity. In a QFT, the field φ(x) is interpreted as an operator on
a Fock space with elements |p1 . . . pn〉, n = 0, 1, 2, . . . This includes the vacuum |0〉,
single-particle states |p〉 with four-momentum p, as well as multi-particle states. These
states transform under unitary representations U(Λ, a) of the Poincaré group, which
provide a probability interpretation for S-matrix elements 〈p1 . . . pn|q1 . . . qr〉.

More details on the Poincaré group can be found in Appendix B. The group consists of translations
(with group element aµ), rotations and boosts (which define the Lorentz group with group element Λ).
Because of the boosts, the Lorentz group is not compact and therefore its finite-dimensional repre-
sentations are not unitary. However, the classical fields transform just under such finite-dimensional
representations: a scalar field φ′(x′) = φ(x) is invariant, a Dirac field ψ(x) transforms under a four-
dimensional spinor representation ψ′(x′) = D(Λ)ψ(x), a vector field Aµ(x) under a four-dimensional
vector representation A′

µ
(x′) = ΛµνAν(x), etc. Because these representations are not unitary, there

is no hope for extracting probability amplitudes from the classical fields. Unitary representations
are infinite-dimensional, which is why we need an infinite-dimensional Fock space. In other words,
implementing relativity (which enters through the boosts) while maintaining unitarity takes us from
quantum mechanics to QFT, where we interpret the fields as operators on the Fock space — instead
of fields like in the classical field theory or wave functions like in quantum mechanics.

Causality. The second basic requirement is that two measurements with a spacelike
distance cannot affect each other:

[O1(x),O2(y)] = 0 for (x− y)2 < 0 . (2.2.1)

Here, O1 and O2 are observables such as quark bilinears ψ̄ Γψ, where Γ is some Dirac
matrix. For bosonic fields, this requirement is implemented by imposing spacelike
commutation relations [φ(x), φ(y)] = 0 for (x− y)2 < 0, whereas for fermionic fields we
need anticommutation relations {ψα(x), ψβ(y)} = 0. The equal-time commutation or
anticommutation relations are special cases of those.
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Fig. 2.2: Generic correlation function (left) and some of the elementary correlation functions
in QCD (right)

These are some of the pillars on which a QFT is built and they summarize the
first part of a typical QFT course: one develops the formalism for free scalar, spinor
and vector fields, based on the representations of the Lorentz group, and studies the
implementation of symmetries through the Noether theorem. Below we will discuss
another pillar, the spectral condition, and depending on what we are after we could
also add renormalizability or (for gauge theories) local gauge invariance to the list.

Interacting QFT. Unfortunately, after switching on interactions, one quickly runs
into trouble at the operator level (cf. Haag’s theorem: a free field remains always free).
To avoid these problems, the hard statements that can be made in an interacting
QFT are those for matrix elements of operators, which therefore become the central
objects of interest. The correlation functions, also called n-point functions or Green
functions, are the vacuum expectation values of time-ordered products of fields:

G(x1, . . . xn) := 〈0|Tφ(x1) . . . φ(xn)|0〉 . (2.2.2)

Pictorially, these are blobs with n legs, one for each spacetime point x1 . . . xn, which
contain all possible interactions between the particles that can happen inside (Fig. 2.2).
The simplest example is a two-point function, a propagator, which contains the (self-)
interactions of a single particle and which for free fields becomes the usual Feynman
propagator. For theories with different types of fields there can be interactions between
different particles, and Fig. 2.2 shows some of the correlation functions in QCD: the
quark and gluon propagators and some of their three- and four-point functions.

Why are these correlation functions relevant? For one, the LSZ formula tells us that
they are related to S-matrix elements:

FT [G(x1 . . . xn, y1 . . . yr)]

=

(
n∏

i=1

i
√
Z

p2
i −m2

i + iε

)(
r∏

j=1

i
√
Z

q2
j −m2

j + iε

)
〈p1 . . . pn, out | q1 . . . qr, in〉conn. ,

(2.2.3)

That is, we can extract the connected S-matrix element for an n → r scattering
process (the invariant amplitudeM) if we calculate the respective correlation function
in momentum space (‘FT’ stands for Fourier transform), go to the kinematic limit
where the external propagators are onshell, and amputate those external propagators.
If the particles carry spinor or vector quantum numbers, we must also contract with
onshell spinors or polarization vectors. Once we know M, we can compute the cross
section from |M|2 and compare it to experiment.
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Fig. 2.3: Lowest-order perturbative diagrams that contribute to Møller scattering in QED.
Topologies like those in the last diagram do not survive the amputation.

This is the standard recipe for a typical QFT calculation. The practical problem
is of course that we first need to know how to calculate the correlation functions in
question. If the coupling constant of the theory is small at the momentum scales of
interest, we can use perturbation theory and expand them into Feynman diagrams,
where we neglect diagrams above a certain loop order that are suppressed by the small
coupling constant in front. (The other practical issue is renormalization but this is well
understood, see Sec. 2.3.)

This recipe has turned out to be extremely successful, with the prime example
given by QED. In that case, the dimensionless coupling αQED = e2/(4π) is indeed
small; inserting dimensions, we have1

αQED =
e2

4π

1

~cε0
≈ 1

137
. (2.2.4)

If we perform a loop expansion for a given correlation function, then higher loop dia-
grams come with higher powers of the coupling and in practice it may even be sufficient
to stick with the lowest (tree-level) order. For example, the electron four-point func-
tion in Fig. 2.3 describes both the Møller (e−e− → e−e−) and Bhabha (e+e− → e+e−)
scattering processes. The leading contribution to Møller scattering is the one-photon
exchange diagram, which leads to the Mott cross section plus spin terms (more on that
later). The smallness of αQED has contributed to the successes of QED, where many
observables can be calculated quite precisely by going to higher orders in perturbation
theory. This has led to a variety of precision measurements of αQED, from the anoma-
lous magnetic moment (‘g− 2’) of electrons and muons, measurements of the Rydberg
constant, the energy level splittings in atoms, etc.

Unfortunately, when we try to apply the same principles to QCD we are confronted
with two challenges that complicate matters enormously. The first difficulty is that
the coupling αQCD becomes large at low momenta (see Section 2.3) and invalidates
a perturbative expansion. Unfortunately this is just the region that is relevant for
hadron physics, so we must look for nonperturbative methods to calculate these
correlation functions at low momenta. The second difficulty is more fundamental:
confinement entails that it is pointless to calculate invariant scattering amplitudes of
quarks and gluons because we can never measure such processes. What we can measure
are reactions between hadrons (e.g. NN or Nπ scattering), or hadrons that interact
with leptons through the electroweak interaction (e+e− annihilation, eN scattering
etc.). We will return to this point in Section 3.1.3, where we show how one can still
extract measurable information from QCD’s elementary correlation functions.

1In natural units ~ = 1 sets the units of action [ML2/T ], c = 1 sets the units of velocity [L/T ] and
~cε0 = 1 the units of charge [C2].
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In any case, what still stands is that the correlation functions in Eq. (2.2.2) encode
the full content of the QFT, namely through the quantum effective action (more on
this in Sec. 2.2.2). Thus, if we knew all of them — and there are infinitely many —
it would be equivalent to having solved the QFT. For this reason, QCD’s correlation
functions will be the central quantities of interest throughout this course.
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Fig. 2.4: Eigenvalue spectrum of the Hamil-
tonian in terms of one-particle states with mass
m and multiparticle states with invariant mass
mλ ≥ 2m.

Spectral representation. Returning
to the remaining basic property of QFT
that we passed over before, let us assume
that each Fock state, which we generi-
cally denote by |λ〉, is an eigenstate of the
Hamiltonian with definite energy and mo-
mentum. The vacuum |0〉 has vanishing
energy and momentum. A one-particle
state |p〉 has momentum p and energy
Ep =

√
p2 +m2. Multiparticle states,

which are characterized by a center-of-
mass momentum p and relative momenta
among the particles, form a continuum:
For example, the lowest possible energy
of a two-particle state in its rest frame
(p = 0) is 2m, but since the two parti-
cles can have relative momentum, which
contributes to their total energy, the state
can have any energy Ep(λ) = (p2 + m2

λ)1/2, where mλ ≥ 2m is the invariant mass of
the state (its energy in the rest frame). The eigenvalue spectrum of H then has the
form shown in Fig. 2.4: a one-particle state sits on its mass shell, a two-particle state
forms a continuum with mλ ≥ 2m and so on.

Based on this, we write the completeness relation of the Fock space as

1 =
∑

λ

1

(2π)3

∫
d4pΘ(p0) δ(p2 −m2

λ) |λ〉〈λ| =
∑

λ

1

(2π)3

∫
d3p

2Ep
|λ〉〈λ| , (2.2.5)

where the sum over λ is formal and includes integrals over relative momenta. The
Lorentz-invariant integral measure ensures that we only integrate over p2 = m2

λ ⇔
p2

0 = E2
p , and we used

δ(p2 −m2
λ) = δ(p2

0 − E2
p) =

δ(p0 − Ep) + δ(p0 + Ep)

2Ep
, (2.2.6)

where only the first term survives because the step function enforces p0 > 0.
It is easy to show that if we insert the completeness relation into the propagator

G(x, y) = 〈0|Tφ(x)φ(y)|0〉, we arrive at the spectral representation for the propa-
gator in momentum space:

G(p2) =
∑

λ

iRλ
p2 −m2

λ + iε
=

∞∫

0

ds

2π

iρ(s)

p2 − s+ iε
. (2.2.7)
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Here we defined the spectral function

ρ(s) =
∑

λ

2πδ(s−m2
λ)Rλ , (2.2.8)

where the sum over λ is again formal and denotes relative-momentum integrations.

The proof goes as follows: By inserting the completeness relation, we obtain

G(x, y) = 〈0|Tφ(x)φ(y)|0〉

= Θ(x0 − y0) 〈0|φ(x)φ(y)|0〉+ Θ(y0 − x0) 〈0|φ(y)φ(x)|0〉

=
∑
λ

1

(2π)3

∫
d3p

2Ep

{
Θ(x0 − y0) 〈0|φ(x)|λ〉 〈λ|φ(y)|0〉

+Θ(y0 − x0) 〈0|φ(y)|λ〉 〈λ|φ(x)|0〉

}
.

(2.2.9)

Now we use the transformation properties of the operator φ(x) under Poincaré transformations U(Λ, a)
and in particular translations U(1, a):

U(Λ, a)φ(x)U(Λ, a)−1 = φ(Λx+ a) ⇒ U(1, a)φ(0)U(1, a)−1 = φ(a) . (2.2.10)

On the other hand, applying a translation to a Fock state only produces a phase, whereas the vacuum
remains invariant:

U(1, a) |λ(p)〉 = eip·a |λ(p)〉 , U(1, a) |0〉 = |0〉 . (2.2.11)

In combination, we have

〈0|φ(x)|λ〉 = 〈0|U(1, x)φ(0)U(1, x)−1|λ〉 = 〈0|φ(0)|λ〉 e−ip·x ,

〈λ|φ(x)|0〉 = 〈0|φ(0)|λ〉∗ eip·x .
(2.2.12)

The remaining matrix element 〈0|φ(0)|λ(p)〉 is Lorentz-invariant, so for a single-particle state it can
only depend on p2 = m2 which is just a number (for multiparticle states it still depends on the relative
momenta). Denoting |〈0|φ(0)|λ〉|2 = Rλ and z = x− y, we arrive at

G(z) =
∑
λ

Rλ

∫
d3p

2Ep

[
Θ(z0) e−ip·z + Θ(−z0) eip·z

(2π)3

]
p0=Ep(λ)

=
∑
λ

RλDF (z,mλ). (2.2.13)

The integral is nothing but the Feynman propagator

DF (z,mλ) =

∫
d4p

(2π)4
e−ip·z

i

p2 −m2
λ + iε

, (2.2.14)

and we arrive at the result

G(z) =

∫
d4p

(2π)4
e−ip·z

∑
λ

iRλ
p2 −m2

λ + iε
(2.2.15)

from where we can read off the propagator G(p2) in momentum space.

Note that Eq. (2.2.7) holds for the full (‘dressed’) propagator of the theory, i.e.,
knowledge of the spectral function is equivalent to the knowledge of the full two-point
function. The spectral function is related to the analytic structure of the propagator.
For a typical theory it is positive and has the form of Fig. 2.5: The one-particle states
lead to an isolated δ−function peak at s = m2, which defines the mass m of the
particle in the full theory (which is not the mass parameter in the Lagrangian!) from
the lowest-lying pole location of the propagator in momentum space. The continuum
of n−particle states begins at s ≥ (2m)2, which leads to a branch cut in the propagator
starting at p2 = 4m2.
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Fig. 2.5: Left: spectral function of a typical field theory, with a single-particle peak at s = m2

and a multiparticle continuum for s ≥ 4m2, together with possible bound states. Right:
Analytic structure of the corresponding propagator with a single-particle pole, bound-state
poles and a branch cut above p2 = 4m2. The dashed line is the contour integration path that
encloses the domain of analyticity.

To see this, define GE(w) = iG(w) with w = u + iv ∈ C and u, v ∈ R. This function (which
is the Euclidean propagator) satisfies the Schwartz reflection principle G∗E(w) = GE(w∗) for analytic
functions. We can use the Cauchy formula to determine GE(w) for w inside its domain of analyticity:

GE(w) =
1

2πi

∮
ds
GE(s)

s− w . (2.2.16)

If GE(w) has only singularities on the positive real axis, we can choose the integration path in Fig. 2.5,
and if it falls off sufficiently fast for |w| → ∞, what remains is the integral

GE(w) =
1

2πi
lim
ε→0

∞∫
0

ds

[
GE(s+ iε)

s− w + iε
− GE(s− iε)
s− w − iε

]

=
1

2πi
lim
ε→0

∞∫
0

ds

[
GE(s+ iε)

s− u− i(v − ε) −
G∗E(s+ iε)

s− u− i(v + ε)

]
.

(2.2.17)

For |v| > ε, w always lies in the domain of analyticity and we can take the limit ε→ 0 to obtain

GE(w) =
1

π

∞∫
0

ds
ImGE(s)

s− u− iv . (2.2.18)

This is the same formula as Eq. (2.2.7) if we identify u = p2 and v = ε, and therefore

ρ(s) = 2 ImGE(s) . (2.2.19)

Thus, if the spectral function is non-zero for s > 4m2, the imaginary part of the propagator is discon-
tinuous above that threshold — it has a branch cut.

In this way, single-particle asymptotic states produce poles in the propagator and
multi-particle states produce cuts. In fact, every new multi-particle production thresh-
old opens up another branch cut and thus another Riemann sheet, so the propagator
becomes a multi-valued function. Vice versa, the existence of a spectral representation
implies that the propagator has only singularities on the timelike axis p2 > 0 but not
in the complex plane of the first Riemann sheet: had there been singularities inside
the integration contour in Eq. (2.2.16), their residues would produce further terms
in (2.2.18) and the identification with Eq. (2.2.7) would no longer go through.
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Fig. 2.6: Bound states have poles on the positive real axis below the threshold, whereas reso-
nances have poles on the second Riemann sheet. (The left figure is only meant for illustration,
since what is shown is really just the square-root function.)

At this point there is no consensus to what extent a spectral representation can be formulated
for gauge theories and/or theories with confinement. For the scalar example the situation is clear:
the operator φ(x) creates single- or multiparticle states |λ〉 with definite mass m, momentum p and
energy Ep. But what about QCD? Certainly, we can count pions |π〉, nucleons |N〉 and other stable
states as asymptotic states in QCD — but these are all bound states. The corresponding multiparticle
states are |ππ〉, |πππ〉, |NN〉, |NN̄〉 etc. Indeed, the sensible matrix elements in QCD are all of the
form

〈0| . . . |0〉, 〈0| . . . |π〉, 〈N | . . . |N〉, 〈0| . . . |ππ〉, etc., (2.2.20)

where the dots denote time-ordered products of quark and gluon field operators, and the initial and
final states contain either the vacuum or stable particles. But what about quarks and gluons? What is
the ‘mass’ or ‘energy’ of a quark or gluon if we cannot measure it? Should we even count them as Fock
states in the sense of Eq. (2.2.5)? If we didn’t, we would break the link between the ‘masses’ of quarks
and gluons and the poles in their propagators, and there would be no reason why QCD’s elementary
correlation functions should have singularities on the positive real axis only — they could also lie in
the complex plane, as long as their effects cancel out in observable scattering amplitudes like those in
Eq. (2.2.20). (It is often said that causality alone restricts the singularities to the positive real axis,
but the proof of this statement also assumes a spectral condition.) It may still be possible to formulate
generalized spectral representations also for quarks and gluons, which restrict their singularities again
to the positive real axis. In any case, in practice from now on we assume that |λ〉 only refers to
asymptotic states with a well-defined mass and energy, which in QCD are bound states.

Resonances. There is another way how poles can move away from the real axis, even
in the presence of a spectral representation: A bound-state pole can pass a multiparticle
production threshold and become a resonance, i.e., an unstable state. By doing so, it
acquires a width, which means an imaginary part. This does not contradict our earlier
statements, since the spectral representation still implies that the first (‘physical’) sheet
must be free of singularities. As a consequence, resonances can only appear as poles
on ‘unphysical’ higher Riemann sheets.

The situation is sketched in Fig. 2.6. The resonance pole location is usually written
as p2 = (m− iΓ/2)2, so that in the complex

√
p2 plane the real part is quoted as the

mass of the resonance and the imaginary part as half the width. The width is related
to the inverse lifetime of the particle: a bound state has an infinite lifetime whereas
very short-lived resonances have poles far in the complex plane.
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Fig. 2.7: Integration paths according to the iε prescription.

Where does iε come from? As a final remark, what is the origin of the ‘iε prescrip-
tion’ that shows up in formulas like (2.2.3) and (2.2.14)? You probably first encountered
it when taking the Fourier transform of the propagator i/(p2 − m2) in the free field
theory. After splitting the d4p integral into d3p and dp0, this function has poles at
p0 = ±Ep = ±

√
p2 +m2, which depend on |p| as indicated in the left of Fig. 2.7. To

reproduce the Feynman propagator 〈0|Tφ(x)φ(y)|0〉, one must integrate slightly below
the p0 axis for Re p0 < 0 and slightly above for Re p0 > 0.

In general, the iε prescription follows from the imaginary-time boundary conditions
when projecting correlation functions onto the interacting vacuum |0〉:

∞∑

n=0

e−iEnT |nf〉〈nf|0〉
T→∞(1−iε)−−−−−−→ e−iE0T |0f〉〈0f|0〉 , (2.2.21)

which removes the higher-energy contributions of the free-particle states |nf〉. This is
equivalent to imposing boundary conditions for every d4x integral (such as the one in
the action of the theory) and every d4p integral,

∫
d4x =

∫
d3x

∞(1−iε)∫

−∞(1−iε)

dx0 ⇔
∫
d4p =

∫
d3p

∞(1+iε)∫

−∞(1+iε)

dp0 , (2.2.22)

or, alternatively, shifting the propagator poles in the p0 variable by iε.
In practice it is convenient to employ a Euclidean metric by defining x4 = ix0 with

x4 ∈ R and formulate the theory directly in Euclidean spacetime. In that case boundary
conditions become irrelevant and the weight factor e−SE [φ] in the path integral defines
a probability measure. This is what is usually done in practical calculations using path
integrals (here we will stick to the Minkowski metric, though). For momentum-space
integrals it corresponds to a Wick rotation, where the integration path in Fig. 2.7
does not proceed from left to right but from bottom to top.

Strictly speaking, for any finite ε, Eq. (2.2.22) implies to integrate not slightly below
and above the p0 axis, but to start at the bottom left corner and integrate to the top
right. This does not make any difference for the Fourier transform of the propagator,
but it is useful to remember when calculating loop integrals, whose pole locations can
line up like in the right of Fig. 2.7 for certain kinematical situations. If one integrates
over d3p first, the poles produce branch cuts in the complex p0 plane, and to avoid
them one has to deform the integration contour accordingly — both with or without
a Wick rotation. If one integrates over p0 first, one must pick the correct residues. If
this is done properly, results in Minkowski and Euclidean space are the same.
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Fig. 2.8: Visualization of a path integral. The integration over all values of φ(xi) at each
spacetime point xi is equivalent to an integration over all possible field configuration φ(x).

2.2.2 Path-integral quantization

Path integrals in QFT. Another way to quantize a field theory is the path-integral
formalism. The central object is the path integral

∫
Dφ eiS[φ] (. . . ) = lim

n→∞

∫
dφ(x1) . . . dφ(xn) eiS[φ] (. . . ) , (2.2.23)

which can be pictorially understood as in Fig. 2.8: at each spacetime point xi we
integrate over all possible values φ(xi), which amounts to an integration over all paths
in the field space, i.e., all possible field configurations. If we had different types of fields
with additional group representation labels or Lorentz-Dirac indices, the product would
go over all of them as well. With eiS[φ] as probability measure (for this one needs the iε
prescription or go to Euclidean space), the integral picks up the quantum corrections
to the classical path defined by the classical equations of motion δS[φ]/δφ = 0. As long
as the system is sufficiently ‘classical’, the classical solutions will dominate the result;
otherwise many trajectories will contribute.

One can show that the correlation functions (2.2.2) in the path-integral formalism
are given by

G(x1, . . . xn) = 〈0|Tφ(x1) . . . φ(xn)|0〉 =

∫
Dφ eiS[φ] φ(x1) . . . φ(xn)∫

Dφ eiS[φ]
. (2.2.24)

Even though our notation does not distinguish it, one should remember that the φ(xi)
in the vacuum expectation value are operators acting on the state space, whereas the
φ(xi) in the path integral are merely functions but not operators. For fermionic fields,
they are anticommuting Grassmann fields to implement the anticommutativity (see
Sec. 2.2.3). To avoid the cumbersome distinction between operators and functions, and
to reflect the statistical nature of the path integral as a quantum expectation value, it
is common to denote the correlation functions by G(x1, . . . xn) = 〈φ(x1) . . . φ(xn)〉.
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The apparent drawback of the path-integral approach is that it is quite hard to
actually calculate path integrals. With the exception of a few simple cases, such cal-
culations usually have to be performed numerically. This is done in lattice QFT,
where spacetime is discretized and path integrals are calculated by statistical Monte-
Carlo sampling. This is the most direct way to compute correlation functions and the
hadronic observables they encode from QCD, and over the last decades lattice QCD
has made spectacular progress in that arena.

Functional derivatives. There is another way of making the path-integral approach
useful without actually calculating path integrals. Namely, one can generate the cor-
relation functions from the partition function Z[J ] by adding a source term with an
external source J(x):

Z[J ] =

∫
Dφ ei(S[φ]−

∫
d4xφ(x)J(x)) . (2.2.25)

If we take a functional derivative of the source term, we obtain

iδ

δJ(x1)

[
−i
∫
d4xφ(x)J(x)

]
= φ(x1) . (2.2.26)

Taking the functional derivative of the partition function then yields

iδ

δJ(x1)
Z[J ] =

∫
Dφ ei(... ) φ(x1) ,

iδ

δJ(x1)

iδ

δJ(x2)
Z[J ] =

∫
Dφ ei(... ) φ(x1)φ(x2)

(2.2.27)

etc., which can be generalized to an arbitrary polynomial function(al) of the fields:

f

[
iδ

δJ

]
Z[J ] =

∫
Dφ ei(... ) f [φ] . (2.2.28)

Comparing this with Eq. (2.2.24), we see that we can generate the correlation functions
by an n-fold derivative of Z[J ], dividing by Z[0] and finally letting J → 0:

G(x1 . . . xn) =
iδ

δJ(x1)
. . .

iδ

δJ(xn)

∣∣∣∣
J=0

Z[J ]

Z[0]
. (2.2.29)

The two-fold functional derivative of Z[J ] is the two-point function, the three-fold
derivative the three-point function, etc. Vice versa, the partition function can be
written as

Z[J ] =

∫
Dφ eiS[φ]

∞∑

n=0

(−i)n
n

(∫
d4xJ(x)φ(x)

)n

=
∞∑

n=0

(−i)n
n

∫
d4x1 . . . d

4xn J(x1) . . . J(xn)

∫
Dφ eiS[φ] φ(x1) . . . φ(xn)

︸ ︷︷ ︸
Z[0]G(x1,...xn)

.
(2.2.30)

Thus, we can generate all correlation functions from Z[J ], and Z[J ] can be recon-
structed from the knowledge of all correlation functions. They contain the same infor-
mation as the partition function, which defines the QFT.
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In the following it will be convenient to leave the J−dependence intact, at least for
intermediate steps in calculations, so that the ‘physics’ is recovered in the end when
setting J = 0. Through Eq. (2.2.28), we define correlation functions in the presence of
the source J as

〈f [φ]〉J :=

∫
Dφ ei(S[φ]−

∫
d4xφ(x)J(x)) f [φ]

∫
Dφ ei(S[φ]−

∫
d4xφ(x)J(x))

=
1

Z[J ]
f

[
iδ

δJ

]
Z[J ] . (2.2.31)

Perturbation theory. The path-integral approach is very useful for doing calculations
in perturbation theory. To do so, we split the action into a non-interacting and an
interacting part:

S[φ] = S0[φ] + g SI [φ] . (2.2.32)

Then we can write

eig SI [φ] e−i
∫
d4xφ(x)J(x) = eig SI [

iδ
δJ ] e−i

∫
d4xφ(x)J(x) , (2.2.33)

since for a small coupling constant g we can expand eig SI [φ] in powers of g and each
term consists of polynomials of the fields. In this way we can pull out the interacting
part of the exponential from the path integral,

Z[J ] = eig SI [
iδ
δJ ]
∫
Dφ ei(S0[φ]−

∫
d4xφ(x)J(x)) =

∑

n

(ig)n

n!

(
SI

[
iδ

δJ

])n
Z0[J ] , (2.2.34)

where the remaining path integral Z0[J ] is calculable in a closed form since it only
depends on the free action. For example, in the scalar theory one obtains

Z0[J ] =

∫
Dφ ei(S0[φ]−

∫
d4xφ(x)J(x)) = Z0[0] e−

1
2

∫
d4x J(x)DF (x,y) J(y) , (2.2.35)

where the constant Z0[0] absorbs the remaining path integral and DF (x, y) is the Feyn-
man propagator. In this way, Z[J ] can be computed order by order in perturbation
theory: The result for n = 0 is the free theory, n = 1 gives the O(g) correction, and
so on. The correlation functions (2.2.29) follow from functional derivatives, where the
constant Z0[0] drops out.

Quantum equations of motion. While the machinery of perturbation theory is
equally straightforward to set up using canonical quantization, the power of the path-
integral approach lies in its non-perturbative applications. This leads to the so-called
functional methods, where relations between the correlation functions of the theory
are derived in the form of integral or differential equations (or both).

The Dyson-Schwinger equations (DSEs) are the quantum equations of motion
of a QFT and can be derived with almost no assumptions. The partition function Z[J ]
is invariant under a shift φ′(x) = φ(x) + ε(x), since this is just a relabeling of the fields
under the integral, so we can write

Z[J ] =

∫
Dφ′ ei(S[φ′]−

∫
d4xφ′(x)J(x))

=

∫
Dφ ei(S[φ]−

∫
d4xφ(x)J(x))+i

∫
d4x ε(x)

(
δS[φ]
δφ(x)

−J(x)
)

= Z[J ]

〈
e
i
∫
d4x ε(x)

(
δS[φ]
δφ(x)

−J(x)
)〉

J

.

(2.2.36)
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= =. . . . . .1PI

connected

Fig. 2.9: Full, connected and 1PI diagrams in the four-point function of φ4 theory (permuta-
tions not shown).

In the second line we assumed that the path integral measure Dφ is also invariant,
and in the third line we inserted the definition (2.2.31). Since ε(x) is arbitrary, by
expanding the exponential we find

〈
δS[φ]

δφ(x)

〉

J

= J(x) , (2.2.37)

which for J → 0 is just the quantum average of the classical equations of motion.
But Eq. (2.2.37) is more useful than that. If we leave the dependence on the source

J intact and exploit (2.2.31) again, it becomes

1

Z[J ]

δS

δφ

[
iδ

δJ

]
Z[J ] = J(x) . (2.2.38)

This should be read in the sense that we replace the functional dependence of δS/δφ
on φ by a dependence on iδ/δJ and apply it to the partition function. In this way,
the equation serves as a ‘generating DSE’, because upon taking further functional
derivatives δn/δJn and setting J → 0 in the end, we successively generate relations
between the correlation functions (2.2.29) of the theory — the tower of DSEs. Note that
the path integral no longer appears in these equations explicitly; instead, we calculate
the correlation functions from each other.

As an example, we take another derivative iδ/δJ of (2.2.31) to obtain

iδ

δJ(y)
〈f(φ)〉J =

1

Z[J ]
f

[
iδ

δJ

]
iδ

δJ(y)
Z[J ]− 1

Z[J ]2
i δZ[J ]

δJ(y)
f

[
iδ

δJ

]
Z[J ]

= 〈f(φ)φ(y)〉J − 〈f(φ)〉J 〈φ(y)〉J .
(2.2.39)

Applied to Eq. (2.2.37) and setting the sources to zero, this yields〈
δS[φ]

δφ(x)
φ(y)

〉
= iδ4(x− y) . (2.2.40)

From here one can derive the DSEs for the n-point functions with a tree-level counterpart in the action
(which enter with ∝ φn terms). For example, in a free scalar theory the propagator DSE becomes

δS[φ]

δφ(x)
= −(2 +m2)φ(x) ⇒ −(2x +m2) 〈φ(x)φ(y)〉 = iδ4(x− y) , (2.2.41)

which returns the Feynman propagator i/(p2 −m2 + iε) in momentum space.

Similar types of equations for the correlation functions can be derived from sym-
metry relations following from the Noether theorem. These are the Ward-Takahashi
identities (WTIs) and Slavnov-Taylor identities (STIs), which we will briefly
touch upon in Sec. 2.2.3 and discuss in more detail in Sec. 3.1.2.
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Quantum effective action. The relations above are rather formal and generic. What
do they look like in practice? At this point it is useful to distinguish between

� the full correlation functions, generated by the partition function Z[J ],

� connected correlation functions, which enter in S-matrix elements and are thus
of physical interest,

� and one-particle-irreducible (1PI) correlation functions, where external prop-
agators are amputated and we keep only those diagrams that do not fall apart by
cutting one line (see Fig. 2.9). In this way, they do away with the redundancy and
describe the irreducible content of an n−point interaction vertex. For example,
renormalizability can be determined from the 1PI vertices alone; hence they are
the prime quantities of theoretical interest.

We also define two new generating functionals, which generate these new types
of correlation functions by functional derivatives, namely W [J ] = −i lnZ[J ] and the
quantum effective action

Γ[ϕ] = W [J ] +

∫
d4xϕ(x) J(x) . (2.2.42)

W [J ] depends on the source field J(x), whereas the source that appears in Γ[ϕ] is the
averaged field ϕ(x). From Eq. (2.2.42) one can see that W [J ] and Γ[ϕ] are Legendre
transforms of each other. The meaning of these quantities becomes more clear if we
write the partition function as

Z[J ] = eiW [J ] =

∫
Dφ ei(S[φ]−

∫
d4xφ(x)J(x)) = ei(Γ[ϕ]−

∫
d4xϕ(x) J(x)) . (2.2.43)

In this sense, Γ[ϕ] and ϕ(x) can be seen as the quantum versions of the classical action
S[φ] and the classical field φ(x), integrated over quantum fluctuations and with the
path integral exponential as a weight factor. More precisely, from Eq. (2.2.42) we have

ϕ(x) = −δW [J ]

δJ(x)
=

1

Z[J ]

iδ

δJ(x)
Z[J ]

(2.2.31)
= 〈φ(x)〉J . (2.2.44)

Thus, ϕ(x) is the vacuum expectation value of the field φ(x) in the presence of the
source J , which vanishes2 in the limit J = 0. Vice versa, J(x) satisfies

J(x) =
δΓ[ϕ]

δϕ(x)
. (2.2.45)

Like in thermodynamics, J(x) and ϕ(x) are conjugate variables and the generating
functionals W [J ] and Γ[ϕ] are the corresponding potentials. J is the ‘intensive’ and ϕ
the ‘extensive’ variable, and differentiation with respect to one gives the other.

While the classical action S[φ] contains the content of the classical field theory,
either of the functionals Z[J ], W [J ] or Γ[ϕ] determines the QFT completely since all

2Unless in the case of spontaneous symmetry breaking, but even then one can redefine the field so
that its vacuum expectation value vanishes.
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correlation functions can be derived from them: the connected ones are derivatives of
W [J ] with respect to J , and 1PI vertices are derivatives of the effective action Γ[ϕ]
with respect to ϕ. For example, the 1PI two- and three-point functions are given by

δ2 Γ[ϕ]

δϕ(x1) δϕ(x2)

∣∣∣∣
ϕ=0

,
δ3 Γ[ϕ]

δϕ(x1) δϕ(x2) δϕ(x3)

∣∣∣∣
ϕ=0

. (2.2.46)

Relations between full, connected and 1PI correlation functions. To relate
the full correlation functions with their connected and 1PI counterparts, we must re-
formulate Eq. (2.2.31) in terms of W [J ] instead of Z[J ]. To do so, we exploit the useful
relation

e−Af(∂) eA = f(∂ + ∂A) , (2.2.47)

where ∂ stands for a generic derivative acting on A. The r.h.s. acts on 1, so all unsat-
urated derivatives vanish. It is straightforward to verify this for polynomial functions,
e.g. f(∂) = ∂2:

e−A ∂2 eA = e−A ∂ (A′ eA) = A′′ +A′
2
,

(∂ + ∂A)2 = (∂ + ∂A) ∂A = A′′ +A′
2
.

(2.2.48)

Applied to Eq. (2.2.31), with A = iW [J ] and ∂ = iδ/δJ , we arrive at

〈f [φ]〉J = f

[
iδ

δJ
− δW [J ]

δJ

]
. (2.2.49)

Here the dependence of f on each field value ϕ(xi) has to be replaced by a dependence
on the bracket above, with δ/δJ(xi), and all unsaturated derivatives vanish since it acts
on 1. In this way we have expressed the vacuum expectation value of f(φ) through
functional derivatives of W [J ], which are the connected n-point functions. For example,
if we abbreviate

W ′′xy[J ] =
δ2W [J ]

δJ(x) δJ(y)
, Γ′′xy[ϕ] =

δ2Γ[ϕ]

δϕ(x) δϕ(y)
, etc. (2.2.50)

we obtain for the two-point function:

〈φ(x)φ(y)〉J =

(
iδ

δJ(x)
−W ′x[J ]

)(
iδ

δJ(y)
−W ′y[J ]

)

= W ′x[J ]W ′y[J ]− iW ′′xy[J ]

= ϕ(x)ϕ(y)− iW ′′xy[J ] .

(2.2.51)

The unsaturated derivative in the first line vanishes, and in the third line we used
Eq. (2.2.44). In the limit J = 0 the vacuum expectation value ϕ(x) is zero, and we
find that the ‘connected’ propagator W ′′xy[0] is the same as the usual one, 〈φ(x)φ(y)〉,
modulo a factor i. The same exercise can be repeated for higher n-point functions to
express them in terms of connected and disconnected parts.
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Now let us reformulate Eq. (2.2.49) in terms of Γ[ϕ] instead ofW [J ]. From Eqs. (2.2.44–
2.2.45) we have W ′x[J ] = −ϕ(x) and Γ′x[ϕ] = J(x) and therefore

∫
d4yW ′′xy[J ] Γ′′yz[ϕ] = −

∫
d4y

δϕ(x)

δJ(y)

δJ(y)

δϕ(z)
= −δϕ(x)

δϕ(z)
= −δ4(x− z) . (2.2.52)

In other words, the 1PI two-point function Γ′′xy[0] is the inverse of W ′′xy[0]. This explains
why the inverse tree-level propagators appear in the classical action together with the
tree-level vertices: the classical action contains the 1PI correlation functions at tree
level.

Let us denote the dressed propagator in the presence of the external source ϕ by
∆xy[ϕ] = Γ′′xy[ϕ]−1. The product rule entails that the derivative of the propagator with
respect to ϕ is

δ

δϕ(z)
∆xy[ϕ] = −

∫
d4a

∫
d4b∆xa[ϕ] Γ′′′azb[ϕ] ∆by[ϕ]. (2.2.53)

The derivative with respect to J becomes

δ

δJ(x)
=

∫
d4y

δϕ(y)

δJ(x)

δ

δϕ(y)
= −

∫
d4yW ′′xy[J ]

δ

δϕ(y)
=

∫
d4y∆xy[ϕ]

δ

δϕ(y)
, (2.2.54)

so we can express Eq. (2.2.49) in terms of the effective action and its derivatives:

〈f [φ]〉J = f

[
ϕ(x) +

∫
d4y∆xy[ϕ]

iδ

δϕ(y)

]
. (2.2.55)

This is the identity that we were after, because it allows us to relate the full n-
point functions with their 1PI counterpart. Evaluating it for the two-point function,
we recover our previous result (2.2.51):

〈φ(x)φ(y)〉J =

(
ϕ(x) +

∫
d4a∆xa[ϕ]

iδ

δϕ(a)

)
ϕ(y) = ϕ(x)ϕ(y) + i∆xy[ϕ] . (2.2.56)

For the three-point function we obtain

〈φ(x)φ(y)φ(z)〉J =

(
ϕ(x) +

∫
d4a∆xa[ϕ]

iδ

δϕ(a)

)(
ϕ(y) +

∫
d4b∆yb[ϕ]

iδ

δϕ(b)

)
ϕ(z)

=

(
ϕ(x) +

∫
d4a∆xa[ϕ]

iδ

δϕ(a)

)
(ϕ(y)ϕ(z) + i∆yz[ϕ])

= ϕ(x)ϕ(y)ϕ(z) + i∆xy[ϕ]ϕ(z) + i∆xz[ϕ]ϕ(y) + i∆yz[ϕ]ϕ(x)

+

∫
d4a

∫
d4b

∫
d4c∆xa[ϕ] ∆yb[ϕ] Γ′′′bac[ϕ] ∆cz[ϕ] , (2.2.57)

where we used Eq. (2.2.53) in the final step. After setting the sources to zero, only the
last line survives and we find that the full three-point function is just the 1PI three-
point vertex with external propagator legs attached. Going further to the four-point
function, the relation would become more complicated since the four-point function
has 1-particle-reducible topologies that fall apart by cutting one line (see below).
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Dyson-Schwinger equations for 1PI correlation functions. Eq. (2.2.55) is not
only useful for relating full and 1PI correlation functions, but also for working out the
quantum versions of classical equations f(φ) = 0 between the fields: we just need to
replace the (usually non-linear) dependence on φ by the bracket on the r.h.s. – which
generates further derivatives and derivatives of propagators – and set all fields to zero in
the end, together with all unsaturated derivatives. If the classical action contains more
than one field, then the functional dependence holds for each ϕi(x), and the integral
over y also goes over all intermediate (mixed!) propagators, which drop out in the end
when setting the sources to zero.

With this we can express the generating DSE (2.2.37) in terms of the 1PI correlation
functions:

δΓ[ϕ]

δϕ(x)
=
δS

δφ

[
ϕ(x) +

∫
d4y ∆xy[ϕ]

iδ

δϕ(y)

]
. (2.2.58)

Now we can better see what the equation actually means: On the r.h.s. we have the
classical equations of motion, but with the φ dependence replaced by the content of the
bracket. Like in Eqs. (2.2.56) and (2.2.57), this will reproduce the classical equations
of motion for ϕ(x) plus further terms which describe quantum corrections. The l.h.s.
is the derivative of the quantum effective action. If we take further derivatives, we
generate the 1PI two-, three-, . . . n-point functions, which therefore always contain a
classical part together with quantum contributions.

In practice Eq. (2.2.55) amounts to repeated applications of the bracket with the
derivative, which suggests to use a diagrammatic language. We need graphical
expressions for the source field ϕ(x), the propagator ∆xy, the higher n−point functions
Γ′′′xyz, Γ′′′′xyzw, . . . and the effect of the functional derivative δ/δϕ(x) on these quantities:

)x(ϕ

xy∆

xyz
′′′Γ

xyzw
′′′′Γ

�

�

�

�

x

)x(δϕ

δ

)x(δϕ

δ

)x(δϕ

δ

)x(δϕ

δ

�

�

�

�

x

x

and so on. In the graphical notation we no longer distinguish between a correlation
function that depends on ϕ(x) as opposed to one where the field is set to zero, and for
simplicity we also suppress all minus signs, i factors and multiplicities that arise from
derivatives.

What we still need is a graphical analogue for Eq. (2.2.55), where φ(x) is replaced by
ϕ(x)+

∫
d4y∆xy iδ/δϕ(y). If we work this out for products of fields like in Eqs. (2.2.56)

and (2.2.57) we arrive at:

ϕ(x) . . . ϕ(z) →
(
ϕ(x) +

∫
. . .

)
. . .

(
ϕ(z) +

∫
. . .

)
, (2.2.59)
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or graphically:
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For simplicity we also absorbed the different symmetrizations with the same topology
into one diagram. If we set ϕ = 0, these graphs tell us how ordinary n-point functions
are related with their 1PI counterparts: the three-point functions are identical except
for the external propagator legs, whereas the full four-point function is the sum of
disconnected parts, a 1PI term, and 1-particle-reducible diagrams that contain 1PI
three-point functions.

On the other hand, we can interpret these diagrams also differently: without the
extra integral term in Eq. (2.2.55) we would return to the classical quantity f(ϕ)
expressed in terms of ϕ instead of φ. In the graphical notation we can then also
drop the distinction between φ(x) and its quantum expectation value ϕ(x) and use
the same symbols for the fields that appear in the Lagrangian. In that way we can
transform equations for the classical fields (equations of motion, symmetry relations
etc.) into quantum identities for the 1PI correlation functions. Going from ‘classical’
to ‘quantum’ in the picture above then entails to connect the legs in all possible ways
and equip them with dressed propagators.

φ4 theory. We illustrate this by considering the simplest scalar field theory, φ4 theory.
The classical action and its functional derivative are given by

S =

∫
d4x

[
1

2

(
∂µφ∂µφ−m2φ2

)
− g

4!
φ4

]
,

δS

δφ
= −(2 +m2)φ− g

3!
φ3 . (2.2.60)

Setting δS/δφ = 0 yields the classical equations of motion. Diagrammatically, this
amounts to

+
-1

S �

0� �+
-1

δφ
δS

The line with ‘−1’ is the inverse tree-level propagator. In the classical action it is
contracted with the field φ; the functional derivative removes one instance of φ. As
before we ignore all prefactors and multiplicities.
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Now ‘connect the dots’ in all possible ways to obtain the quantum eq. of motion:

� �

� +
-1

+ +δϕ
δΓ

We arrive at the same result in formulas if we replace φ in Eq. (2.2.60) with the bracket
in (2.2.58) and let it act on 1:

δΓ

δϕ(x)
= −(2 +m2)ϕ(x)− g

3!

[
ϕ(x)3 + 3i ϕ(x) ∆xx +

∫

z

∫

z′

∫

z′′

∆xz∆xz′∆xz′′Γ
′′′
zz′z′′

]
,

(2.2.61)
where we suppressed the arguments in ∆[ϕ̃] and Γ′′′[ϕ̃] and abbreviated the integrals∫
d4z by

∫
z. Applying another derivative and setting ϕ = 0 yields the DSE for the

inverse scalar propagator:

-1
� �

-1
+ +

=0ϕ
2δϕ
Γ2δ

∆−1
xy = −(2 +m2) δ4(x− y)− g

3!

[
3i δ4(x− y) ∆xx +

∫

z

∫

z′

∫

z′′

∆xz∆xz′∆xz′′Γ
′′′′
zz′z′′y

]
.

(2.2.62)
In principle, the derivatives of the propagators in the two-loop diagram produce further
terms including three-point vertices; however, as a consequence of the Lagrangian’s Z2

symmetry under ϕ→ −ϕ, there are no odd n-point functions in φ4 theory and therefore
Γ′′′xyz[0] = 0.

Eq. (2.2.62) says that the inverse full (‘dressed’) propagator is the sum of the inverse
classical (tree-level) propagator plus quantum loop corrections, which define the self-
energy. The equation is exact but depends on the four-point vertex, which satisfies its
own DSE. Still, if we happened to know the exact four-point vertex, the equation would
give us the exact two-point function. This goes back to the comment below Eq. (2.2.38):
instead of working out the path integral explicitly, one can calculate the correlation
functions from each other. In practice the equations are solved in momentum space,
where each loop becomes a four-momentum integration, so they have the usual structure
of Feynman diagrams.

Since the DSEs are exact, they also reproduce perturbation theory if the coupling
is small. To get a DSE for the propagator instead of its inverse, multiply Eq. (2.2.62)
with the tree-level propagator (∆0) from the left and the full propagator (∆) from the
right (or vice versa):

∆−1 = ∆−1
0 − Σ ⇒ ∆ = ∆0 + ∆0 Σ ∆ , (2.2.63)

where Σ is the sum of the self-energy terms. Reinsert the equation again for each
instance of the dressed propagator on the right,

∆ = ∆0 + ∆0 Σ ∆ = ∆0 + ∆0 Σ ∆0 + ∆0 Σ ∆ = . . . , (2.2.64)
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= +

+ . . .

Fig. 2.10: Perturbative expansion of the propagator in φ4 theory. The colored boxes highlight
the 1PI diagrams which appear in the self-energy.

and do the same for every instance of the propagator and the vertex inside the self-
energy Σ. Because the self-energy comes with a factor g and the four-point vertex
includes another factor g, every additional loop carries a factor g; and as long as
|g| < 1, higher loop diagrams are suppressed. In this way we successively generate the
perturbative series for the propagator (Fig. 2.10).

Even if the perturbation series does not converge, it is useful to remember that
there are non-perturbative, exact DSEs behind it, which can be derived for any QFT.
A simple analogue is the geometric series: The solution of the equation

f(x) = 1 + xf(x) = 1 + x+ x2f(x) = 1 + x+ x2 + x3f(x) = . . . , (2.2.65)

is f(x) = 1/(1 − x). The geometric series f(x) =
∑∞

n=0 x
n converges to that result

only if |x| < 1, whereas each step in Eq. (2.2.65) is non-perturbative and exact. The
difference comes from the last term, where f(x) appears again and pulls the result back
even if x becomes explosively large.

Dyson-Schwinger equations in QCD. Let us be bold and try to apply the procedure
to QCD right away. There are still issues we have not yet dealt with (see Sec. 2.2.3),
which will produce additional ghost diagrams, but otherwise the diagrammatic deriva-
tion goes through as before. The classical action of QCD takes the form:

+ + + +
-1 -1

S �

We use the convention that the left circles in the fermion terms represent the antiquark
fields ψ̄ and the right circles the quark fields ψ. Taking a functional derivative with
respect to ψ̄ yields the classical equation of motion for the quark, the Dirac equation:

0�δψ
δS

+
-1

�

Consequently, the quantum equation of motion becomes (connect the dots)

δψ
δΓ

+
-1

� +



30 QCD

Note that this involves a mixed, field-dependent ‘quark-gluon propagator’ on the right.
Taking another functional derivative with respect to ψ and setting all fields to zero
gives us the quark DSE for the inverse quark propagator:

-1
� �

-1
+

=0ψ̄A,ψ,
ψδψ¯δ

Γ2δ

The quark DSE tells us that the inverse full propagator is the sum of the inverse
tree-level propagator plus quantum loop corrections, which are contained in the quark
self-energy. In practice it enables us to compute the quark propagator if the gluon
propagator and quark-gluon vertex are known.

We can repeat the same steps also for the gluon propagator. The classical equation
of motion for the gluon (the Maxwell equation) reads

0�
δA
δS

+ + +
-1

�

and the corresponding quantum equation of motion:

δA
δΓ

+� + + +
δA
δS

After taking another derivative with respect to A and setting all sources to zero, we
obtain the gluon DSE:

-1
� �

-1

=0ψ̄A,ψ,
Aδ

Γ2δ
2 +

++

+

+

The inverse dressed gluon propagator is the sum of the inverse tree-level propagator, a
quark loop, a gluon loop, a tadpole diagram, a ‘sunset’ diagram and a ‘squint’ diagram.
The gauge fixing procedure in the next section will also produce a ghost loop, which
has the same form as the quark loop. The inputs of the equation are then the quark
and ghost propagators and the quark-gluon, ghost-gluon, three-gluon and four-gluon
vertices. If we solved the quark, gluon and ghost DSEs in combination (i.e., all two-
point functions), the remaining inputs would be the vertices.

Actually we have ignored another subtlety: if the action contains several fields, one has to sum
over them when taking the derivative of the propagators in Eq. (2.2.53), which also leads to mixed
vertices. The general rule is that, after taking functional derivatives, for each internal ’half-propagator’
connected to a dressed vertex one has to sum over all types of fields. This does not modify the quark
and gluon DSEs but it will produce additional diagrams, for example, in the quark-gluon vertex DSE.
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2.2.3 Gauge fixing in QCD

Path integrals in QCD. We have discussed most of the things so far at the level of a
generic QFT, so we should get a bit more specific. The straightforward generalization
of the partition function in Eq. (2.2.25) to QCD with quark (ψ), antiquark (ψ) and
gluon fields (Aµ) is:

Z[J, η, η ] =

∫
DADψDψ ei(S[A,ψ, ψ ]−

∫
d4x (JµAµ+η ψ+η ψ)) , (2.2.66)

where we have added a vector source Jµ for the gluon field and spinor sources η and η
for the quark and antiquark fields, respectively. The fermion fields in the path integral
are anticommuting Grassmann numbers, whereas their corresponding field operators
in the canonical approach satisfy equal-time anticommutation relations:

{
ψα,i(x), ψ†β,j(y)

}
x0=y0 = δ3(x− y) δαβ δij ,

{
ψα,i(x), ψβ,j(y)

}
x0=y0 =

{
ψ†α,i(x), ψ†β,j(y)

}
x0=y0 = 0 .

(2.2.67)

For example, the quark propagator is given by

Sαβ(x1, x2) = 〈0|Tψα(x1)ψβ(x2)|0〉 =
i2δ2

δηα(x1) δηβ(x2)

∣∣∣∣
J, η, η=0

Z[J, η, η ]

Z[ 0, 0, 0 ]
. (2.2.68)

We recollect some relations for Grassmann variables. A Grassmann algebra is an algebra gen-
erated by a basis {θ1 . . . θn} which satisfies anticommutation relations {θi, θj} = 0. In particular, this
implies θ2

i = 0. As a consequence, a general element of the algebra is at most linear in each θi,

f(θ) = c0 + c1 θ , f(θ1, θ2) = c0 + c1 θ1 + c2 θ2 + c12 θ1 θ2 , etc. (2.2.69)

which also means that a Taylor expansion stops: eaθ = 1 + aθ. A derivative can then be defined by
replacing θi → 1, but the θi must first be permuted to the derivative operator:

∂f(θ)

∂θ
= c1 ,

∂f(θ1, θ2)

∂θ1
= c1 + c12 θ2 ,

∂f(θ1, θ2)

∂θ2
= c2 − c12 θ1 , etc. (2.2.70)

The integration can be defined by ∫
dθ 1 = 0 ,

∫
dθ θ = 1 , (2.2.71)

where the first relation guarantees translation invariance,
∫
dθ f(θ + η) −

∫
dθ f(θ) =

∫
dθ (c1 η)

!
= 0,

and the second is a normalization. Also here the integration variable must be permuted to the integral
measure. As a consequence, the integration and derivative are the same:∫

dθ f(θ) =

∫
dθ (c0 + c1 θ) = c1 =

df(θ)

dθ
. (2.2.72)

An integral over n Grassmann variables dnθ = dθn . . . dθ1 becomes∫
dnθ θ1 . . . θn = 1 ,

∫
dnθ θi1 . . . θin = εi1...in , (2.2.73)

where εi1...in is the totally antisymmetric tensor with ε1...n = 1. In the integral over f(θ) = f(θ1, . . . θn)
only the last term in Eq. (2.2.69) survives, since every dθi must be saturated by θi:∫

dnθ f(θ) =

∫
dnθ c1...n θ1 . . . θn = c1...n (2.2.74)
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To obtain the Jacobian for the transformation θ′i = Aij θj , we write∫
dnθ f(θ′) =

∫
dnθ c1...nA1i1 . . . Anin θi1 . . . θin = ε1...nA1i1 . . . Anin︸ ︷︷ ︸

=detA

c1...n , (2.2.75)

and since c1...n =
∫
dnθ f(θ) =

∫
dnθ′ f(θ′) we find

dnθ′ =
1

detA
dnθ . (2.2.76)

This is in contrast to the bosonic case, where x′i = Aij xj leads to dnx′ = | detA| dnx.

We define complex Grassmann variables by (θi θj)
∗ = θ∗j θ

∗
i , so that

dnθ dnθ∗ = dθn . . . dθ1 dθ
∗
1 . . . dθ

∗
n = dθ1 dθ

∗
1 . . . dθn dθ

∗
n = dθn dθ

∗
n . . . dθ1 dθ

∗
1 . (2.2.77)

Pairs like dθi dθ
∗
i are bosonic and can be permuted through, whereas dnθ dnθ∗ = (−1)n dnθ∗ dnθ. This

yields
∫
dnθ dnθ∗ θ∗i1 θj1 . . . θ

∗
in θjn = εi1...in εj1...jn , and in the integral

∫
dnθ dnθ∗ f(θ,θ∗) only the

term ∝ θ1 . . . θn θ
∗
1 . . . θ

∗
n survives. Finally, we calculate the integral over a Gaussian:∫

dnθ dnθ∗ eθ
∗B θ =

∫
dnθ dnθ∗

1

n!
(θ∗B θ)n

=
1

n!
Bi1j1 . . . Binjn

∫
dnθ dnθ∗ θ∗i1 θj1 . . . θ

∗
in θjn

=
1

n!
εi1...in εj1...jn Bi1j1 . . . Binjn = detB .

(2.2.78)

If the exponent comes with a minus sign, this will produce a factor (−1)n which can be compensated
by employing the integral measure dnθ∗ dnθ:∫

dnθ∗ dnθ e−θ
∗B θ = detB . (2.2.79)

The fact that we can express the determinant of a matrix as an integral over Grassmann variables will
become extremely useful in a moment. Another useful relation is∫

dnθ∗ dnθ e−(θ∗B θ+η∗θ+η θ∗) = eη
∗B−1η

∫
dnθ∗ dnθ e−(θ∗+η∗B−1)B (θ+B−1η)

= eη
∗B−1η detB ,

(2.2.80)

from where one can verify Eq. (2.2.68) for the tree-level quark propagator if one starts from the partition
function of a free fermion Lagrangian.

The gluon propagator is given by

Dµν(x1, x2) = 〈0|TAµ(x1)Aν(x2)|0〉 =
i2δ2

δJµ(x1) δJν(x2)

∣∣∣∣
J, η, η=0

Z[J, η, η ]

Z[ 0, 0, 0 ]
, (2.2.81)

but from the discussion around Eq. (2.1.21) this expression does not yet make sense.
The problem appears in the kinetic gluon term in the Lagrangian:

− 1
4F

a
µν F

µν
a
∼= 1

2
Aaµ (2 gµν − ∂µ∂ν)Aaν + . . . (2.2.82)

The tree-level inverse gluon propagator in momentum space is proportional to a trans-
verse projector,

D−1
0 (p)µν = ip2

(
gµν − pµpν

p2

)
, (2.2.83)
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but projectors are not invertible: if P+ and P− are generic projectors that satisfy
P 2
± = P±, P+P− = 0 and P+ +P− = 1, then a linear combination of them has the form

F = αP+ + β P− ⇒ F−1 =
P+

α
+
P−
β
. (2.2.84)

For α = 0 or β = 0, the inverse is not well-defined. Applied to Eq. (2.2.83), this means
that the gluon propagator Dµν

0 (p) does not exist.
The problem appears in the gauge-boson sector and is structurally the same in

QCD and QED. In fact, it already arises in the free theory by observing that Aµ0 has
no canonically conjugate momentum. The conjugate momentum is defined by

Πµ =
∂L

∂ (∂0Aµ)
= Fµ0 , (2.2.85)

which entails Π0 = 0, but this contradicts the equal-time commutation relations

[Aµ(x),Πν(y)]x0=y0 = igµν δ
3(x− y) . (2.2.86)

Redundancy in the path integral. Another manifestation of the problem is that
in the path integral over the gauge fields,

Z =

∫
DAeiS[A] , (2.2.87)

we integrate over redundant degrees of freedom that are connected by gauge transfor-
mations. This is easy to see in QED: If we split the gauge fields into transverse and
longitudinal parts Aµ = AµT +AµL, with ∂µA

µ
T = 0 and AµL = ∂µ Θ, we find that

(2 gµν − ∂µ∂ν)ALν = 2 ∂µΘ− ∂µ 2Θ = 0

⇒ (2 gµν − ∂µ∂ν)Aν = (2 gµν − ∂µ∂ν)ATν = 2AµT
(2.2.88)

and thus AµL drops out completely from the kinetic term in the QED Lagrangian:

− 1

4
FµνF

µν =
1

2
Aµ (2gµν − ∂µ∂ν)Aν =

1

2
ATµ 2AµT . (2.2.89)

Now, if we perform a gauge transformation

A′
µ

= UAµU † +
i

g
U(∂µU †) = Aµ +

1

g
∂µε = AµT + ∂µ

(
Θ +

ε

g

)
(2.2.90)

and compare to A′µ = A′µT+∂µΘ′, we see that the gauge transformation only affects AµL:

A′
µ
T = AµT , Θ′ = Θ +

ε

g
. (2.2.91)

In other words, the path integral DA overcounts physically equivalent degrees of free-
dom, namely the longitudinal field components that emerge from each other by gauge
transformations.
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Fig. 2.11: Gauge orbits and gauge-fixing surface.

In QED the problem is cured by the Gupta-Bleuler method: The first step is to
add a gauge-fixing term as a Lagrange multiplier with a gauge parameter ξ,

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2
p.I.∼= 1

2
Aµ

(
2 gµν − ∂µ∂ν +

1

ξ
∂µ∂ν

)
Aν (2.2.92)

so that the inverse propagator picks up a longitudinal part and becomes invertible:

D−1
F (p)µν = ip2

[(
gµν − pµpν

p2

)
+

1

ξ

pµpν

p2

]
. (2.2.93)

The second step is to impose the transversality condition 〈λ|∂µAµ|λ〉 for physical states
|λ〉, which has the effect that the longitudinal and timelike photon polarizations cancel
each other in S-matrix elements and external photon legs are always transverse. In
fact, the need to preserve this feature when switching on interactions is the reason why
we impose local gauge invariance also for fermions.

Faddeev-Popov gauge fixing. Unfortunately, the situation in QCD is more compli-
cated because gauge transformations mix the transverse and longitudinal field compo-
nents, and both of them contribute to the gluonic Lagrangian due to the three-gluon
and four-gluon interactions.

The analogue of the Gupta-Bleuler method in the non-Abelian case is the Faddeev-
Popov method. Let us denote a gauge transformation of the gluon field by A→ AU ,
where U is some gauge transformation with gauge parameter ε. The basic idea is then
to restrict the path integral

Z =

∫
DAeiS[A] (2.2.94)

to the gauge-fixing surface
f [A] = ∂µA

µ = 0 , (2.2.95)

which is illustrated in Fig. 2.11. The gauge-fixing function f [A] singles out a hypersur-
face of fixed gauge, so that each gauge field counts only once. In principle the condition
f [A] is arbitrary; the choice (2.2.95) corresponds to linear covariant gauges.
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How would we implement such a condition? Presumably by inserting a delta function
δ(f [A]); however, this would modify the path integral. A better strategy is to insert
a quantity that equals 1 but contains δ(f [A]). Consider a one-dimensional example:
suppose we have an integral over a variable ε (the ‘gauge transformation parameter’)
and we want to restrict it to f(ε) = 0. Then the identity

∫
dε

∣∣∣∣
df(ε)

dε

∣∣∣∣ δ(f(ε)) =

∫
dε|f ′(ε0)| δ(ε− ε0)

|f ′(ε0)| = 1 (2.2.96)

holds as long as f(ε) = 0 has only one solution ε0.

Let us generalize this relation to infinitely many variables, where ε becomes a con-
tinuous function ε(x). In this case, the gauge transformation reads

(AU )µ = UAµU † +
1

g
U(∂µU †) , U(x) = ei

∑
a εa(x) ta (2.2.97)

and the gauge-fixing condition is

fa[A
U ] = ∂µ(AUa )µ = ∂µ

(
Aµa +

1

g
Dµ
ab εb

)
, (2.2.98)

where Dµ
ab = ∂µ δab − gfabcAµc is the covariant derivative in the adjoint representation

from Eq. (2.1.34). Then the analogue of Eq. (2.2.96) is the ‘functional unity’

∫
DU detM [A] δ(f [AU ]) = 1 . (2.2.99)

Here, the path integral

DU = lim
n→∞

n∏

i=1

∏

a

εa(xi) (2.2.100)

is the group volume, the δ−function is an infinite product of δ−functions at each space-
time point x, and the Faddeev-Popov operator M [A] is the functional derivative of
the gauge-fixing condition with respect to the gauge transformation parameter:

Mab[A](x, y) =
δfa[A

U ](x)

δεb(y)

∣∣∣∣
f [AU ]=0

=
1

g
∂µD

µ
ab δ

4(x− y)

=
1

g
δab 2 δ4(x− y)− fabc ∂µ

(
Aµc δ

4(x− y)
)
.

(2.2.101)

Note that M [A] is independent of the gauge transformation parameter. In QED, it
is also independent of Aµ because the second term with fabc disappears, and thus
detM [A] factorizes from the path integral and can be pulled out.

Now we can insert (2.2.99) in the path integral,

Z =

∫
DA

∫
DU detM [A ] δ(f [AU ]) eiS[A] , (2.2.102)
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and, because Z is gauge-invariant, perform a gauge transformation AU → A. The gauge
field measure DA, the group measure DU , the Faddeev-Popov determinant and the
classical action S[A ] are all invariant under this operation, so that it merely amounts
to replacing δ(f [AU ]) → δ(f [A]). The integrand then no longer depends on U and
the group integration DU factorizes; it produces an infinite constant which drops out
whenever we normalize Z, for example when calculating correlation functions. The re-
maining δ−function restricts the integration over all fields to the hypersurface f [A] = 0.
Each gauge orbit contributes only one field configuration and we have an integration
over physically distinct fields.

The caveat here is that we have assumed the gauge-fixing condition to be unique, like in the one-
dimensional example where we assumed that the equation f(ε) = 0 admits only one solution ε0. This
is usually not the case due to Gribov copies: the gauge-fixing condition can intersect the gauge orbits
more than once and is therefore not complete (cf. Fig. 2.11); there is a residual gauge freedom. Also in
QED ∂µA

µ = 2 Θ = 0 does not fix Θ completely because Eq. (2.2.91) still allows us to perform residual
gauge transformations as long as 2 ε = 0, but this freedom can be removed by imposing appropriate
boundary conditions on the fields. In QCD it has been suggested to restrict the gauge fields to the
interior of the Gribov horizon where detM [A] > 0, or possibly even further, and there are indications
that the properties close to the Gribov horizon might be related to confinement.

The remaining question is what to do with the Faddeev-Popov determinant and
the δ−function. It turns out that one can shuffle both quantities into the exponential
and thus into the action S[A]. We can take care of the δ−function by changing the
gauge fixing condition to f [A] + ξ

2 B = 0, where B(x) lives in the Lie algebra but
does not depend on A. This does not affect the Faddeev-Popov determinant, but the
functional integral ZB now implicitly depends on B. Since any B leads to the same
gauge-invariant physics, we can work with ZB, ZB′ or

∫
DB F (B)ZB; these are all

equivalent. If we integrate over the functions B(x) with some Gaussian weight, we can
remove the δ−function in favor of a new term in the action:

Z =

∫
DB e− iξ8

∫
d4xB2(x)DA detM [A] δ

(
f [A] + ξ

2 B
)
eiS[A]

=

∫
DA detM [A] e

i

(
S[A]−

∫
d4x

f [A]2

2ξ

)
.

(2.2.103)

With a linear covariant gauge, this provides just the same modification as the Gupta-
Bleuler method in QED, Eq. (2.2.92):

− 1
4F

a
µν F

µν
a −

(∂µA
µ
a)2

2ξ
∼= 1

2
Aaµ

(
2 gµν − ∂µ∂ν +

1

ξ
∂µ∂ν

)
Aaν + . . . (2.2.104)

As a result, the inverse gluon propagator is no longer transverse and can be inverted.
ξ is the gauge parameter: ξ = 0 defines the Landau gauge, ξ = 1 the Feynman gauge,
and in principle there are many other possible choices which differ not only by the
gauge parameter but also by the gauge fixing condition (Coulomb gauge, axial gauge,
light-cone gauge, maximal Abelian gauge etc.).

Finally, we want to shift the Faddeev-Popov determinant into the action as well.
The trick is that the determinant of an operator can be written as a path integral over
anticommuting Grassmann fields, cf. Eq. (2.2.78):

detM [A] =

∫
DcDc̄ e

∫
d4x

∫
d4y c̄a(x)Mab[A](x,y) cb(y) , (2.2.105)
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where the Faddeev-Popov ghosts ca(x), c̄a(x) are scalar but Grassmann-valued
fields. They carry the wrong Bose-Fermi statistics, but this is of no concern since they
are anyway unphysical — they are just a consequence of fixing the gauge. Thus, the
procedure is a generalization of the Gupta-Bleuler method since in QED the Faddeev-
Popov determinant is independent of Aµ and can be pulled out of the path integral,
so that only the δ−function remains, whereas the non-Abelian case also requires the
dynamical inclusion of ghost fields.

The new gauge-fixing terms in the action read

SGF[A, c, c̄ ] = −
∫
d4x

f [A]2

2ξ
− i
∫
d4x

∫
d4y c̄a(x)Mab[A](x, y) cb(y)

p.I.∼=
∫
d4x

[
1

2ξ
Aaµ ∂

µ∂νAaν −
i

g
c̄a 2 ca − ifabc (∂µ c̄a)A

µ
c cb

]

∼=
∫
d4x

[
1

2ξ
Aaµ ∂

µ∂νAaν + c̄a 2 ca − gfabc (∂µ c̄a)A
µ
b cc

]
,

(2.2.106)

where in the third line we absorbed the factor −i/g into the antighost field. In con-
clusion, we obtained a longitudinal term in the gluon propagator, a massless ghost
propagator, and a ghost-gluon three-point vertex with coupling constant g.

Reinstating the quarks and including all source terms, the final partition function
of QCD takes the form

Z[J, η, η, σ, σ ] =

∫
DADψDψDcDc̄ ei(S[A,ψ, ψ ]+SGF[A, c, c̄ ]+SC). (2.2.107)

The source term contains the gluon source Jµ, quark sources η, η̄ as well as ghost
sources σ and σ:

SC = −
∫
d4x (JµA

µ + η ψ + ψ η + σ c+ c̄ σ) . (2.2.108)

BRST symmetry. There is another, more economical way to arrive at Eq. (2.2.106),
which is to impose BRST invariance of the action (Becchi, Rouet, Stora, Tyutin).
A BRST transformation is defined as an infinitesimal gauge transformation (2.1.37)
where the gauge parameter is a ghost field c(x) =

∑
a ca(x) ta, i.e., where the ca are

scalar anticommuting Grassmann fields:

δψ = ic ψ , δψ = −iψ c , δAµ =
1

g
Dµc , δFµν = i [c, Fµν ] . (2.2.109)

We further demand this transformation to be nilpotent (δ2 = 0), so that δ is also
Grassmann-valued and anticommutes with c. Then it is straightforward to prove that
any of the relations above fixes the transformation behavior of the ghost itself, for
example:

δ2ψ = δ (icψ) = i(δc)ψ − ic (δψ) = (iδc+ c2)ψ
!

= 0 , (2.2.110)

so we have

δc = ic2 = ica cb ta tb = ica cb
(

1
2 [ta, tb] + 1

2{ta, tb}
)

= −1
2 fabc ca cb tc (2.2.111)
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because ca cb = −cb ca is antisymmetric. (Note that the Grassmann nature of the ghost
fields ca leads to weird relations such as [c, c] = 2c2.) Thus, in components the BRST
transformation of the ghost field becomes δca = −1

2 fabc cb cc.
Applying δ increases the ghost number (the charge corresponding to a U(1) sym-

metry of the ghost fields) by one unit; hence, when applied to the antighost, it must
produce a scalar field with ghost number zero, the so-called Nakanishi-Lautrup field:
δc̄a =: −Ba/g. Nilpotency of the antighost transformation then fixes δB = 0. The
different treatment of c and c̄ implies that they are not conjugates of each other but
truly independent fields.

Since the classical action S[A, ψ, ψ ] is gauge invariant and BRST is a gauge trans-
formation, it is also BRST invariant. The most general BRST-invariant action is then
the sum of the classical action plus a term SGF = δO which is a BRST variation itself,
since in that case we have δSGF = δ2O = 0. Adding this to the action means fixing
a gauge; which gauge we get depends on O. To recover (2.2.106), we contract the
antighost with our earlier gauge-fixing condition f [A] + ξ

2 B:

SGF = −g δ
∫
d4x ca

(
fa[A] +

ξ

2
Ba

)

=

∫
d4xBa

(
fa[A] +

ξ

2
Ba

)
+ g

∫
d4x

∫
d4y c̄a(x)Mab[A](x, y) cb(y).

(2.2.112)

Inserting the equations of motion forBa, namely fa+ξBa = 0, yields again Eq. (2.2.106);
the same result follows from integrating over Ba in the path integral. Hence, imposing
BRST invariance simultaneously generates gauge-fixing and ghost terms in the action.

Ward-Takahashi and Slavnov-Taylor identities. Correlation functions are not
gauge invariant, but the gauge invariance of the generating functional (2.2.107) can be
used to derive identities for them. As in the derivation of Dyson-Schwinger equations,
a gauge transformation under the path integral is just a relabeling of fields, so Z is
invariant; also the classical action is gauge invariant. The only gauge-dependent terms
in (2.2.107) are then SGF and SC , and as in the derivation in Eq. (2.2.36), invariance
of Z leads to the relation

〈 δSGF + δSC 〉J = 0 , (2.2.113)

which represents the generic form of a Ward-Takahashi identity. Then, employing
Eqs. (2.2.31), (2.2.49) or (2.2.55), one can write this as a master equation for full (with
sources J and derivatives Z ′[J ]), connected (J and W ′[J ]) or 1PI correlation functions
(with sources ϕ and derivatives of the effective action, Γ′[ϕ]), see Sec. 3.1.2 for details.

In the case of non-Abelian gauge theories it is more convenient to exploit BRST
invariance. Here δSGF vanishes as well and only the BRST variations of the fields in
the source term remain to be evaluated: 〈δSC〉J = 0. In the compact notation from
earlier:

− 〈δSC〉J =

∫
d4x

∑

i

Ji 〈δφi〉J =

∫
d4x

∑

i

δΓ

δϕi
〈δφi〉J = 0 , (2.2.114)

where the δφi are now nonlinear functions of the fields themselves, cf. Eq. (2.2.109).
This leads to the Slavnov-Taylor identities.


