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2.3 Renormalization

We are now almost in a position to write down the Feynman rules of QCD. In our
discussion so far we have still bypassed the problem of renormalization. The need for
renormalization is related to the behavior of a theory at infinitely large momenta and
in practice arises in the calculation of loop diagrams, which are usually UV-divergent.
Below we will see that the problem can be dealt with by introducing a small number of
renormalization constants and setting corresponding renormalization conditions, which
makes all correlation functions finite. We will also see that renormalizability is a deep
property of a QFT that can already be read off from the Lagrangian of the theory.

2.3.1 Feynman rules of QCD

Renormalization constants. A possible starting point when dealing with renormal-
ization is to interpret all fields, masses and couplings in the Lagrangian (2.1.29) as
‘bare’ and unphysical, and define their renormalized versions by:

ψB = Z
1/2
ψ ψ , AB = Z

1/2
A A , cB = Z1/2

c c , mB = Zmm, gB = Zg g . (2.3.1)

The quantities without a subscript are the renormalized ones and they are related to
the bare quantities by renormalization constants. Then the full Lagrangian of QCD
including the gauge-fixing terms becomes

LQCD = Zψ ψ (i/∂ − Zmm)ψ +
1

2
Aaµ

[
ZA (2 gµν − ∂µ∂ν) +

1

ξ
∂µ∂ν

]
Aaν + Zc c̄a 2 ca

− Z3g
g

2
fabc (∂µAνa − ∂νAµa)AbµA

c
ν − Z4g

g2

4
fabe fcdeA

µ
a A

ν
b A

c
µA

d
ν

+ ZΓ g ψ /Aψ − Z̃Γ gfabc (∂µc̄a)A
µ
b cc . (2.3.2)

The first line contains the tree-level quark, gluon and ghost propagators, the second line
the three- and four-gluon interactions, and the third line the quark-gluon and ghost-
gluon interaction vertices. The renormalization constants for the vertices are related
to those in (2.3.1) by

ZΓ = Zg Z
1/2
A Zψ , Z̃Γ = Zg Z

1/2
A Zc , Z3g = Zg Z

3/2
A , Z4g = Z2

g Z
2
A . (2.3.3)

In principle we could have different renormalization constants for each term in the
Lagrangian, but the Slavnov-Taylor identities ensure that this is not the case. Thus,
we have five independent renormalization constants Zψ, ZA, Zc, Zm, Zg, which means
that at some point we will need to set five renormalization conditions.

Moreover, the renormalization constants also enter in the Feynman rules since
they are derived from the Lagrangian (2.3.2). In the following we write down the
Feynman rules for the renormalized propagators and 1PI vertices of QCD.
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Before doing so, we note that one could equivalently introduce renormalization constants in the
language of counterterms:

Zψ = 1 + δZψ , Zψ Zmm = m+ δm , Zg g = g + δg , . . . (2.3.4)

In this way we would split the Lagrangian into two pieces, where the first has the original form but with
renormalized fields and without renormalization constants, and the second contains the counterterms
which generate new propagators and vertices with new Feynman rules. We will not follow this strategy
here and instead absorb the renormalization constants directly in the Feynman rules. Also, note that
the renormalization constants in the literature usually go by different names:

Zψ = Z2 , ZA = Z3 , Zc = Z̃3 , ZΓ = Z1f , Z̃Γ = Z̃1 , Z3g = Z1 , Z4g = Z4 . (2.3.5)

Quark propagator. The quark propagator is a Dirac matrix with indices α and β,
it depends on one momentum pµ, and it is a diagonal matrix δij with i, j = 1, 2, 3
in color space. (We ignore flavor since it merely amounts to replicating terms in the
Lagrangian.) Since we count the spin indices from the top of the arrow, i.e. from left
to right, we also let the momentum flow from right to left. Writing Zmm = mB, where
m is the renormalized current-quark mass, the inverse tree-level quark propagator from
the Lagrangian is then given by (we suppress the color indices on the l.h.s.)

-1

𝑝𝛼 𝛽
𝑖 𝑗

S−1
0 (p) = −iZψ

(
/p−mB

)
δij ,

S0(p) =
i

Zψ

/p+mB

p2 −m2
B + iε

δij .
(2.3.6)

Can we also write down a ‘Feynman rule’ for the full propagator S(p)? In general,
any n-point correlation function can be expanded in a tensor basis

Gµν...αβ...(p1, . . . pn) =

N∑

i=1

fi(p
2
1, p

2
2, . . . ) τi(p1, . . . pn)µν...αβ... , (2.3.7)

where the τi are Lorentz-covariant tensors that inherit the Lorentz and Dirac structure
of G. The fi are Lorentz-invariant dressing functions (‘form factors’), which depend
on all possible Lorentz-invariant momentum variables — they contain the physical
information encoded in the correlation function. Like G itself, the basis elements
transform under finite-dimensional representations of the Lorentz group,

τi(p
′
1, . . . p

′
n)µν...αβ... = Λµµ′ Λ

ν
ν′ · · ·Dαα′(Λ) τ(p1, . . . pn)µ

′ν′...
α′β′...D

−1
β′β(Λ) , (2.3.8)

where Λ is the Lorentz transformation and D(Λ) its spinor representation matrix (see
Appendix B). The same formula holds for parity transformations if D(Λ) is replaced
by γ0. In practice, this means that the tensors are constructed by combining

gµν , εµναβ , 1 , γµ , γ5γ
µ , σµν , γ5σ

µν (2.3.9)

with the four-momenta in the system.
The quark propagator depends on only one momentum,

Sαβ(p) =

2∑

i=1

fi(p
2) τi(p)αβ , (2.3.10)



2.3 Renormalization 41

and from (2.3.9) we can only construct the two tensors 1 and /p since those with γ5

would have the wrong parity. Thus, the full quark propagator can be written as
𝑝

-1

𝑝
𝛼 𝛽
𝑖 𝑗

S−1(p) = −iA(p2)
(
/p−M(p2)

)
δij ,

S(p) =
i

A(p2)

/p+M(p2)

p2 −M(p2)2 + iε
δij .

(2.3.11)

Here we defined the quark mass function M(p2), and the inverse of A(p2) is called
the quark ‘wave-function renormalization’ Zf (p2) = 1/A(p2). If we knew these two
functions for all p2 ∈ C (recall the discussion around Fig. 2.5), we would know the full
quark propagator in QCD. To project out the dressing functions, we take Dirac traces:

M(p2)A(p2) = − i
4

Tr
{
S−1(p)

}
, A(p2) =

i

4p2
Tr
{
/pS
−1(p)

}
. (2.3.12)

Gluon propagator. The gluon propagator depends on two Lorentz indices µ, ν and
one momentum q; from this we can only form the two tensors gµν and qµqν . It is useful
to define the transverse and longitudinal projectors as their linear combinations:

Tµνq = gµν − qµqν

q2
, Lµνq =

qµqν

q2
. (2.3.13)

Then the Feynman rules for the tree-level and full gluon propagator are

-1

-1

𝑞
𝜇 𝜈
𝑎 𝑏

(D−1
0 )µν(q) = iq2

[
ZA T

µν
q +

1

ξ
Lµνq

]
δab ,

(D−1)µν(q) = iq2

[
1

Z(q2)
Tµνq +

1

ξ
Lµνq

]
δab ,

Dµν(q) = − i

q2 + iε

[
Z(q2)Tµνq + ξ Lµνq

]
δab ,

(2.3.14)

where Z(q2) is the gluon dressing function. (In principle the longitudinal part could
also pick up a dressing, but the Slavnov-Taylor identity prevents this and ensures that
the longitudinal part remains undressed.) The gluon is color-diagonal with a, b = 1 . . . 8.

Ghost propagator. The ghost propagator is scalar and thus the simplest case, since
it has no tensor structure and there is only one ghost dressing function:

-1

-1

𝑞
𝑎 𝑏

D−1
G,0(q) = iq2 Zc δab ,

D−1
G (q) = iq2G(q2)−1 δab ,

DG(q) = − i

q2 + iε
G(q2) δab .

(2.3.15)

Note that if we had not absorbed the minus sign into the antighost field in the third line
of Eq. (2.2.106), the Feynman rules for the ghost propagator and ghost-gluon vertex
would come with additional minus signs.
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Quark-gluon vertex. The Feynman rules for the quark-gluon vertex are

𝛼, 𝑖 𝛽, 𝑗 

𝑞

𝑝

𝜇, 𝑎 

Γµ0 = ig (ta)ij ZΓ γ
µ ,

Γµ(p, q) = ig (ta)ij

12∑

i=1

fi(p
2, q2, p · q) τµi (p, q) .

(2.3.16)

The full vertex becomes rather complicated since it depends on two independent mo-
menta p and q. This leads to 12 possible tensors that are allowed by Lorentz covariance:
γµ, pµ, qµ, [γµ, /p], . . . , and the dressing functions depend on the three Lorentz invariants
p2, q2 and p · q. Since the vertex has a charge-conjugation symmetry, it is convenient
to identify p with the average momentum between the incoming and outgoing quarks
because this makes the symmetry manifest in the dressing functions (the dependence
on p · q is then either even or odd).

Ghost-gluon vertex. The ghost-gluon vertex has no Dirac structure and therefore
only two tensors pµ and qµ. In this case the tree-level vertex depends on the outgoing
momentum pµ because in the Lagrangian (2.3.2) the derivative acts on ca (i.e., the
ghost and antighost fields are not related by charge conjugation):

𝑎 𝑐

𝑞

𝑝

𝜇, 𝑏 

Γµgh,0(p) = gfabc Z̃Γ p
µ ,

Γµgh(p, q) = gfabc

2∑

i=1

f̃i(p
2, q2, p · q) τµi (p, q) .

(2.3.17)

Three-gluon vertex. Here things get a bit more cumbersome since the full vertex
has 14 possible Lorentz tensors. The tree-level vertex (with p1 + p2 + p3 = 0) reads:

𝜇, 𝑎 𝜈, 𝑏

𝑝�

𝑝� 𝑝�

𝜌, 𝑐 

Γµνρ3g,0(p1, p2, p3) = gfabc Z3g

[
(p1 − p2)ρ gµν

+(p2 − p3)µ gνρ + (p3 − p1)ν gρµ
]
.

(2.3.18)

Four-gluon vertex. In this case things get really cumbersome: The full vertex has
136 linearly independent Lorentz tensors and five color structures. The tree-level vertex
is momentum-independent:𝜇, 𝑎

𝜇, 𝑎

𝜈, 𝑏

𝜈, 𝑏

𝜎, 𝑑 𝜌, 𝑐 

Γµνρσ4g,0 = −ig2Z4g

[
fabefcde (gµρgνσ − gνρgµσ)

+ facefbde (gµνgρσ − gνρgµσ)

+ fadefcbe (gµρgνσ − gµνgρσ)
]
.

(2.3.19)



2.3 Renormalization 43

One-loop perturbation theory. With the Feynman rules at hand, we are ready to
set up perturbation theory. To avoid redundancies, we will do this for the 1PI correla-
tion functions, i.e. we set up the perturbative expansion for the inverse propagators,
in the same way as we wrote the Dyson-Schwinger equations in Eq. (2.2.62) and there-
after. Then we only need to work out the self-energy diagrams, whereas the expansion
for the propagator is easily obtained from Eq. (2.2.63) if needed.

The DSE for the quark propagator has the generic form

S−1(p) = S−1
0 (p)− iΣ(p) , (2.3.20)

where the quark self-energy Σ(p) contains only one diagram at one-loop order:

-1
� �

-1

If we write Σ(p) = ΣA(p2) /p−ΣM (p2) and insert Eqs. (2.3.6) and (2.3.11), we read off
the relations for the two scalar dressing functions:

A(p2) = Zψ + ΣA(p2) ,

M(p2)A(p2) = ZψZmm+ ΣM (p2) .
(2.3.21)

We will later see that the renormalization constants have the structure Z = 1 +O(g2),
and since the self-energy comes with a factor g2, the mass function up to O(g2) is

M(p2) = Zmm+ ΣM (p2)−mΣA(p2) . (2.3.22)

We will work out the self-energy explicitly in Sec. 2.3.2.
The DSE for the gluon propagator is given by

(D−1)µν(q) = (D−1
0 )µν(q)− iΠµν(q) , (2.3.23)

where Πµν(q) is the gluon vacuum polarization. At one-loop order O(g2) it consists of
a quark loop, a gluon loop, a ghost loop, and a tadpole diagram:

-1
� + + +�

-1

We can split the vacuum polarization into two terms,

Πµν(q) = Π(q2)
(
q2gµν − qµqν

)
+ Π̃(q2) gµν = Π(q2) q2 Tµνq , (2.3.24)

where only the first survives because the Slavnov-Taylor identity entails qµΠµν(q) = 0

and therefore Π̃(q2) = 0. (The one-loop result for Π̃(q2) indeed vanishes in dimensional
regularization, but it is non-zero for a cutoff regulator which breaks gauge invariance.)
Inserting Eq. (2.3.14) into the DSE, we see that there are no loop corrections for the
longitudinal part, which is also why no renormalization is required for this term. The
equation then simply becomes

Z(q2)−1 = ZA −Π(q2) . (2.3.25)
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In the analogous case of QED, after renormalization Π(q2) becomes constant for q2 → 0, which
means that the photon propagator has a massless 1/q2 pole and the photon remains massless also with
interactions. In QCD, this is still what happens in perturbation theory but it may no longer be true
non-perturbatively. Early ideas suggested a 1/q4 pole for the gluon ‘propagator’ Z(q2)/q2 since this
would signal confinement: if one connects a quark and antiquark by a gluon, the three-dimensional
Fourier transform of 1/|q|4 leads to a potential ∝ |r| in coordinate space simply by dimensional
counting. Nowadays evidence from non-perturbative (lattice and functional) calculations in Landau
gauge suggests that this is not what happens and that Z(q2) instead vanishes at q2 = 0, either with a
power q2 (‘massive’ or ‘decoupling’ scenario) or higher (‘scaling’ scenario). As a result, Z(q2)/q2

becomes constant or even has a turnover in the infrared. Vice versa, Z(q2)−1 and therefore Π(q2) must
be singular at q2 → 0, but the origin of this singularity is still under debate. Moreover, in the scaling
scenario the infrared exponents for any quark-antiquark interaction diagram still match to produce a
1/q4 behavior (e.g., for the combination of a gluon propagator and two quark-gluon vertices)3, whereas
in the massive scenario (which is supported by lattice calculations) this is not the case.

The DSE for the ghost propagator reads

D−1
G (q) = D−1

G,0(q)− iq2 ΣG(q2) ⇒ G(q2)−1 = Zc − ΣG(q2) , (2.3.26)

where the perturbative expansion of the self-energy is analogous to the quark:

-1
� �

-1

Finally, the one-loop expressions of the quark-gluon, ghost-gluon and three-gluon
vertices have the form (note that a factor g is implicit in the vertices):

� + +

� +

� +

+ + +

+ +

+

︷︸︸︷︷︸︸︷
g )2g(Og

3R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, Mod. Phys. Lett. A 23 (2008) 1105, hep-ph/0607293.

https://arxiv.org/abs/hep-ph/0607293
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2.3.2 Regularization and renormalization

In practice the diagrams we just drew are UV-divergent. The first step in dealing with
this problem is regularization, which means to isolate the divergences. In the second
step we remove the divergences; as we will see, there is a systematic procedure behind
it, namely renormalization.

Feynman parameters. But first of all we must bring the integrals into a manageable
form. To do so, we use the ‘Feynman trick’, where we write the quantity 1/(A1 . . . An)
as an integral over Feynman paramaters x1, . . . xn:

1

A1 . . . An
=

∫
dx1 . . . dxn δ

(
n∑

i=1

xi − 1

)

︸ ︷︷ ︸
dΩn

(n− 1)!(
n∑

i=1

xiAi

)n . (2.3.27)

This is the generalization of the identity

1∫
0

dx

1∫
0

dy
δ(x+ y − 1)

(xA+ yB)2
=

1∫
0

dx
1

[xA+ (1− x)B]2
= − 1

A−B
1

xA+ (1− x)B

∣∣∣∣1
0

=
1

AB
. (2.3.28)

The integral measure dΩn for n = 2 and n = 3 is

∫
dΩ2 . . . =

1∫
0

dx . . .

∣∣∣∣
y=1−x

,

∫
dΩ3 . . . =

1∫
0

dx1

1−x1∫
0

dx2 . . .

∣∣∣∣
x3=1−x1−x2

=
1

2

1∫
0

da

a∫
−a

db . . .

(2.3.29)

Here we set a = x1 + x2 = 1 − x3 and b = x1 − x2, which is convenient since the integral over b is
antisymmetric and thus only even terms in b survive. Similar expressions hold for dΩ4, dΩ5 etc.

Now consider a generic one-loop diagram Ln which has n propagators in the loop.
If we write Ai = (k + pi)

2 −m2
i + iε, where k is the loop momentum and the pi are

external momenta, its structure will always be the same irrespective of the theory:

Ln =

∫
d4k

(2π)4

(. . . )∏n
i=1Ai

= (n− 1)!

∫
dΩn

∫
d4k

(2π)4

(. . . )

(
∑n

i=1 xiAi)
n . (2.3.30)

The numerator (. . . ) can have Lorentz and Dirac indices and in general it also depends
on k and pi. If we define a new loop momentum l by

l = k +

n∑

i=1

xi pi , (2.3.31)

then with
∑

i xi = 1 it is easy to show that

n∑

i=1

xiAi = l2 −∆ + iε , ∆ =

(∑

i

xi pi

)2

−
∑

i

xi
(
p2
i −m2

i

)
, (2.3.32)
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where ∆ does not depend on l but only on the external momenta pi and the Feynman
parameters xi. Thus we obtain

Ln = (n− 1)!

∫
dΩn

∫
d4l

(2π)4

(. . . )

(l2 −∆ + iε)n
. (2.3.33)

Finally, we perform a Wick rotation (see Appendix C)

l4 = il0 ⇒ l2 = −l24 − l2 = −l2E ,
∫
d4l = −i

∫
d3l

−∞∫

∞

dl4 = i

∫
d4lE (2.3.34)

to arrive at the Euclidean integral

Ln = i(−1)n(n− 1)!

∫
dΩn

∫
d4lE
(2π)4

(. . . )

(l2E + ∆)n
. (2.3.35)

Usually the hardest part is to work out the numerator, where we also have to express
k in terms of l and the pi through Eq. (2.3.31). In doing so, it will depend on powers
of the loop momentum lµ. What helps is that integrals over odd powers vanish by
symmetry (replace lµ → −lµ), e.g.

∫
d4lE
(2π)4

lµ

(l2E + ∆)2
= 0 , (2.3.36)

whereas even powers can always be reduced to integrals of the form

Inm =

∫
d4lE
(2π)4

(l2E)m

(l2E + ∆)n
. (2.3.37)

For example, ∫
d4lE
(2π)4

lµlν

(l2E + ∆)2
= −1

4
gµν

∫
d4lE
(2π)4

l2E
(l2E + ∆)2

(2.3.38)

because for µ 6= ν the integral vanishes again by symmetry, whereas for µ = ν it must
be proportional to gµν by Lorentz invariance. The prefactors are then determined by
contracting the indices on both sides, using l2 = −l2E and δµµ = 4 (note that in d
dimensions one has δµµ = d, so the prefactor on the r.h.s. becomes −1/d).

As a consequence, the numerator under the integral in Eq. (2.3.35) can be written
as (. . . ) =

∑
m(. . . )m (l2E)m, and the integral becomes

Ln = i(−1)n(n− 1)!

∫
dΩn

∑

m

(. . . )m Inm . (2.3.39)

Dimensional regularization. The remaining task is to work out the integrals Inm,
which are divergent for n − m ≤ 2. The idea of regularization is to isolate the
divergent pieces and write the expressions as a sum of finite and divergent terms. In
the following we use dimensional regularization, where we generalize the d4l integral to
d dimensions:

I(d)
nm =

1

Md−4

∫
ddlE
(2π)d

(l2E)m

(l2E + ∆)n
. (2.3.40)
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To preserve the mass dimension, we put an (arbitrary) mass scale M in front of the inte-
gral. This seemingly innocuous operation has profound consequences, namely: Regular-
ization always introduces a scale. When splitting the integrals into finite and divergent
pieces, the finite terms still depend on this scale, which cannot be removed.

There are many different ways to regularize the theory: instead of dimensional
regularization, which is convenient for perturbative calculations, we could also

� introduce a hard momentum cutoff
∫∞

0 dl2E →
∫ Λ2

0 dl2E , which unfortunately
breaks gauge invariance;

� use Pauli-Villars regularization, where we subtract each propagator by another
propagator with a large mass M ,

� or use a lattice regularization, where we discretize spacetime and introduce a
lattice spacing a.

In all these cases we end up with an arbitrary mass scale in the theory: the mass M in
dimensional or Pauli-Villars regularization, the cutoff Λ, or the inverse lattice spacing
1/a. Later we will see that we can trade the dependence on this scale for a dependence
on an arbitrary renormalization point. Even for the massless QCD Lagrangian, which
has no intrinsic scale and is therefore scale invariant, regularization introduces a scale.
(And fortunately so, because if we were to compute the hadron spectrum of massless
QCD, we would otherwise expect all hadrons to be massless since nothing sets the scale.)
This is also called anomalous breaking of scale invariance, since an anomaly is a
symmetry of the classical action that is broken at the quantum level.

Moving on with dimensional regularization, we do not repeat the calculation for the
integral (2.3.40) (which can be found in QFT textbooks) but only quote its result:

I(d)
nm =

1

Md−4

1

(4π)d/2
1

Γ(n)

1

∆n−m−d/2
Γ(d2 +m)

Γ(d2)
Γ(n−m− d

2)

d=4−ε
=

1

(4π)2

Γ(m+ 2− ε
2)

Γ(n) Γ(2− ε
2)

1

∆n−m−2

(
4πM2

∆

)ε/2
Γ(n−m− 2 + ε

2).

(2.3.41)

Γ(n) is the Gamma function, which provides an analytic continuation of the result for
arbitrary values of d. It has the properties

� Γ(n) =
∫∞

0 dxxn−1e−x,

� Γ(n) = (n− 1)! for n ∈ N+,

� Γ(n) has poles
at n = 0,−1,−2, . . .

� Γ(n+ 1) = nΓ(n),

� Γ′(1) = −γ = −0.5772 . . .
is the Euler-Mascheroni
constant.

1 2

2

4

-2

3-1-2-3
n

)nΓ(
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For ε→ 0 and thus d→ 4, one can see that (2.3.41) is divergent for n−m− 2 ≤ 0. In
this case we can use

Γ( ε2) =
2

ε
− γ +O(ε) , xε/2 = 1 +

ε

2
lnx+O(ε2) (2.3.42)

to obtain the convergent integrals

{I30 , I40 , I41 , . . . } =
1

(4π)2

{
1

2∆
,

1

6∆2
,

1

3∆
, . . .

}
. (2.3.43)

The divergent integrals are given by

{I20 , I31 , I42 , . . . } =
1

(4π)2

{
D , D − 1

2 , D − 5
6 , . . .

}
(2.3.44)

with

D =
2

ε
− γ + ln

4πM2

∆
+O(ε) . (2.3.45)

Be careful with the limit ε→ 0 for the divergent terms: also O(ε) terms must be kept
in the calculation since they combine with the 1/ε term to give a finite contribution.
In conclusion, we have managed to split the integrals into divergent pieces, where the
UV divergences appear in the form of 1/ε terms, and finite pieces which depend on the
arbitrary mass scale M .

Quark self-energy. Let us work out a concrete example, namely the quark self-energy
from Eq. (2.3.20):

�
𝑘

𝑘�𝑝

𝑝𝑝

Using the Feynman rules, it reads explicitly:

iΣ(p) =

∫
d4k

(2π)4
(igγµ)S0(k) (igγν)Dµν

0 (k − p)
(∑

a

ta ta

)

ij

= −g2CF δij

∫
d4k

(2π)4

γµ (/k +m) γµ
[(k − p)2 + iε][k2 −m2 + iε]

.

(2.3.46)

Here we employed the gluon propagator in Feynman gauge (ξ = 1), the color factor is
CF = (N2

c − 1)/(2Nc), and we ignored the renormalization constants multiplying the
self-energy since they have the structure Z = 1 +O(g2) and will thus only contribute
to higher orders in perturbation theory.

The integral is of the form (2.3.30) with p1 = −p, m1 = 0, p2 = 0 and m2 = m.
Therefore, we have

l = k +
∑

i

xi pi = k − xp ,

∆ = x2 p2 − xp2 − (1− x)(−m2) = (1− x)(m2 − xp2) .

(2.3.47)
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Denoting the denominator by N = γµ (/k +m) γµ and removing the unit matrix δij in
color space, we can immediately use the result (2.3.35):

iΣ(p) = −g2CF
i

Md−4

1∫

0

dx

∫
ddlE
(2π)d

N
(l2E + ∆)2

, (2.3.48)

which we already generalized to d dimensions.
To work out the numerator, use {γµ, γν} = 2gµν and γµγµ = δµµ = d in d dimensions.

This gives

N = γµ (/k +m) γµ = −γµγµ /k + 2/k +mγµγµ

= (2− d) /k +md

= (2− d) /l + (2− d)x/p+md .

(2.3.49)

The first term in the last line is odd in lµ, so it vanishes after integration according to
Eq. (2.3.36), whereas the remainder is independent of the loop momentum and can be
pulled out of the integral. We obtain

iΣ(p) = −ig2CF

1∫

0

dx I
(d)
20

[
(2− d)x/p+md

]
, (2.3.50)

and if we split the self-energy into Σ(p) = ΣA(p2) /p−ΣM (p2) we can read off the scalar
expressions:

ΣA(p2) = g2CF (d− 2)

∫
dxx I

(d)
20 ,

ΣM (p2) = g2CF md

∫
dx I

(d)
20 .

(2.3.51)

Setting d = 4 − ε and taking ε → 0, with I20 = D/(4π)2 and α = g2/(4π), we finally
arrive at

ΣA(p2) =
α

2π
CF

∫
dxx

(
2

ε
− γ + ln

4πM2

∆
− 1

)
,

ΣM (p2) =
αm

π
CF

∫
dx

(
2

ε
− γ + ln

4πM2

∆
− 1

2

)
.

(2.3.52)

In conclusion, we have split the quark self-energy into divergent and finite pieces. But
what are we supposed to do with the divergences — throw them away? How would that
make any sense? Surprisingly enough, this is indeed what eventually has to happen,
but there is a deeper underlying reason which can be understood in the course of
renormalization.
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Renormalization. The basic idea is the following and can be motivated from QED.
There, the full fermion propagator should have a pole at p2 = m2, where it returns to
a free propagator but with the physical mass m. Thus we could impose

S(p)
p2=m2

−−−−−−→ i(/p+m)

p2 −m2 + iε
⇒ A(p2 = m2)

!
= 1

M(p2 = m2)
!

= m.
(2.3.53)

These are two conditions, where one fixes the pole position and the other the residue of
the propagator. They correspond to an onshell renormalization; likewise, we would
demand that the photon dressing function becomes Z(q2 = 0) = 1 at the onshell point.

In QCD it would not make much sense to impose such conditions, since there are no
free quarks and gluons due to confinement. Fortunately, it turns out that these renor-
malization conditions are arbitrary and thus we can generalize them to an arbitrary
renormalization point µ:

S(p)
p2=µ2

−−−−−−→ i(/p+m)

p2 −m2 + iε

∣∣∣∣
p2=µ2

⇒ A(p2 = µ2)
!

= 1 ,

M(p2 = µ2)
!

= m,

Z(q2 = µ2)
!

= 1 , G(q2 = µ2)
!

= 1 , Γµgh(p2 = µ2)
!

= gfabc p
µ .

(2.3.54)

Here we imposed five conditions, four for the quark, gluon and ghost dressing functions
and one for the ghost-gluon vertex. (We could have chosen any other vertex, and in
fact we could have even chosen different renormalization points for each correlation
function, but let’s keep matters simple.)

The effect is that these five conditions determine the five renormalization constants
in Eq. (2.3.1). For example, for the quark propagator we obtain according to (2.3.21):

A(µ2) = Zψ + ΣA(µ2)
!

= 1

M(µ2)A(µ2) = ZψZmm+ ΣM (µ2)
!

= m
⇒

Zψ = 1− ΣA(µ2) ,

ZψZm = 1− ΣM (µ2)

m
.

(2.3.55)

This is, by the way, also the reason why we could set the renormalization constants
attached to the one-loop quark self-energy in Eq. (2.3.46) to 1, since the remaining
contributions would only enter at higher loop orders. As a result, the renormalized
dressing functions are finite because the 1/ε divergences drop out:

A(p2) = 1 + ΣA(p2)− ΣA(µ2) = 1 +
α

2π
CF

∫
dxx ln

m2 − xµ2

m2 − xp2
,

M(p2)A(p2) = m+ ΣM (p2)− ΣM (µ2) = m+
αm

π
CF

∫
dx ln

m2 − xµ2

m2 − xp2
.

(2.3.56)

The resulting mass function up to O(α) is

M(p2) = m

[
1 +

α

π
CF

∫
dx
(

1− x

2

)
ln
m2 − xµ2

m2 − xp2

]
+O(α2) , (2.3.57)

which for p2, µ2 � m2 becomes (we will return to this at the end of Sec. 2.3.3)

M(p2) ≈ m
[
1− 3α

4π
CF ln

p2

µ2

]
. (2.3.58)



2.3 Renormalization 51

We could repeat the procedure to determine the one-loop results for the remaining
propagators and vertices and in all cases the 1/ε divergences would drop out as well. As
a result, imposing five renormalization conditions determines the five renormalization
constants Zi and removes all divergences from the theory (we will better see how this
works below). The resulting correlation functions are finite but depend on the arbitrary
renormalization point µ, which replaces the dependence on the arbitrary mass scale M .
The renormalization constants Zi are still divergent since they absorb the 1/ε terms,
but they drop out in all observables that can be calculated from the theory.

In this way, the mass m(µ) is a parameter of the theory which has to be taken
from experiment. In QED we could set the physical mass of the electron by onshell
renormalization (p2 = m2), because this is where the electron propagator has a pole. In
QCD, the current-quark masses must be specified at some suitable renormalization scale
where theory predictions can be compared to experiment. This scale should also be
spacelike (µ2 < 0) to avoid branch-point singularities that appear in the loop diagrams.
High-energy scattering experiments with hadrons probe quarks and gluons at large
spacelike momenta, which is also where the QCD coupling is small and perturbation
theory applicable.

The coupling g(µ), on the other hand, is not truly a parameter but sets the scale: so
far we have been working in arbitrary units, but to connect to GeV units we must set
the coupling α(µ2) at a given momentum scale. Different values of α(µ2) then merely
rescale the system, which means that the running of the coupling α(µ2) is an inherent
property of the theory itself. Therefore, the parameters of QCD are a scale, where the
coupling takes a specific value, and the current-quark masses at that scale — these
must be taken from experiment.

The choice of a renormalization scheme reflects the arbitrariness in the specifi-
cation of m(µ) and g(µ):

� Imposing overall renormalization conditions of the form (2.3.54) defines a mo-
mentum subtraction (MOM) scheme. This is convenient for nonperturbative
calculations since at no point in the previous discussion we needed to resort
to a perturbative expansion: Eq. (2.3.21) can equally be viewed as the Dyson-
Schwinger equation for the full self-energy, which is nonperturbative and exact.

� Alternatively, one can explicitly subtract the divergent 1/ε terms order by order
in perturbation theory, which defines the MS scheme (minimal subtraction). In
that case our definition of the renormalization scale µ is no longer available and
M = µ takes its place instead, since it is not cancelled by the subtraction anymore.

� Another possibility is to subtract not only the divergences but all terms that are
independent of M ; this defines the MS scheme (modified minimal subtraction).

As a consequence, the masses and couplings depend not only on the renormalization
point but also on the renormalization scheme. For example, the Particle Data Group
(PDG) quotes the current-quark masses in the MS scheme at a renormalization scale
µ = 2 GeV. The quantities obtained in different schemes are related to each other by
finite terms, and the invariance in the choice of µ, m(µ) and g(µ) leads to the concept
of the renormalization group. At the end of the day, all physical observables must
be independent of the renormalization point and scheme.
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Renormalizability. So far we have only considered one explicit diagram. Do the
singularities always cancel? Let’s consider the action for a generic φp theory:

S = −
∫
d4x

[
1

2
φ (2 +m2)φ+ λp φ

p

]
, (2.3.59)

where we suppress the renormalization constants for simplicity. Now count the mass
dimensions of the quantities that appear in the action:

[S] = 0 , [d4x] = −4 ⇒ [L] = 4 , [φ] = 1 , [φp] = p , [λp] = 4− p . (2.3.60)

From here we can infer the dimensions of the 1PI n-point functions in momentum space:

Γ2 =

 
-1

= − i(p2 −m2) + . . . ⇒ [Γ2] = 2 ,

Γ4 = ⇒ [Γ4] = 0 , (2.3.61)

Γ6 = ⇒ [Γ6] = −2 ,

because Γn+2 follows from Γn after taking two functional derivatives δ2/δφ2. Thus, the
mass dimension of Γn is [Γn] = 4− n.

On the other hand, we can also count the dimension of Γn in some given order
in perturbation theory. To do so, we count the number of loops L (each comes with
dimension four), the number of internal propagators I (each with dimension −2), and
the number of vertices (each with dimension [λp]):

[Γn] = 4L− 2I + [λp]V . (2.3.62)

For example in φ4 theory, where [λ4] = 0:

L = 1
I = 2
[ Γ4 ] = 0

L = 1
I = 3
[ Γ6 ] = –2

L = 2
I = 5
[ Γ6 ] = –2

Obviously this is consistent.
Now, the quantity D = 4L − 2I also tells us how badly divergent a given diagram

will be: if the number of loops L beats the number of propagators I it will diverge;
if there are many propagators in a loop it will converge. D is called the superficial
degree of divergence: if D < 0 the diagram converges, if D ≥ 0 it diverges. The
first diagram above has D = 0 and diverges logarithmically. The second has D = −2
and is convergent; the third has D = −2 but unfortunately it is still divergent because
it contains a divergent subdiagram (the one on the left). Hence the name ‘superficial’
degree of divergence:

� a diagram with D ≥ 0 can still be finite due to cancellations,

� a diagram with D < 0 can be divergent if it contains divergent subdiagrams,

� tree-level diagrams have D = 0 but they are finite.
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Fig. 2.12: Degree of divergence D in φ4 theory (left) and φ6 theory (right).

Let us ignore these subtleties for a moment and assume that D counts the actual
degree of divergence. Then from Eq. (2.3.62) the degree of divergence of a given Γn in
φp theory (with λp = λ) is

D = [Γn]− [λ]V . (2.3.63)

The mass dimension [Γn] is fixed, so depending on the mass dimension [λ] of the
coupling, D can rise or fall with higher orders in perturbation theory (expressed by V ).
Take φ4 theory in the left panel of Fig. 2.12, where [λ] = 0 and D = [Γn] is independent
of V . In this case there are only two divergent n-point functions, namely the inverse
propagator and the four-point function. These are also the ones with a tree-level term
in the Lagrangian; they are called the primitively divergent n-point functions.

One can indeed show that the analysis goes through in general, also for divergent
subdiagrams, which is known as the BPHZ theorem (Bogoliubov, Parasiuk, Hepp,
Zimmermann). The reason is that the Zi factors in front of the diagrams (which we can
neglect at one-loop) cancel the divergences at higher orders. Take for example the two
rightmost diagrams below Eq. (2.3.62): both contribute to the six-point function, one
with V = 3 and the other with V = 4. The V = 3 diagram carries factors Z = 1 + δZ,
where δZ contributes at higher order to the V = 4 graph. The sum of all contributions
at a given order cancels the divergences. Here it is especially useful to employ the
counterterm language, because the subdivergences will cancel with the counterterms
at each order in perturbation theory.

On the other hand, the same analysis for φ6 theory, where [λ] = −2 and thus
D = [Γn] + 2V , gives the result in the right panel of Fig. 2.12: if we go high enough in
perturbation theory, eventually every n-point function will diverge!

This leads to the notion of renormalizability: a theory is renormalizable if only
a finite number of Green functions have D ≥ 0, so that only a finite number of renor-
malization conditions are necessary to remove the divergences from the theory. From
Eq. (2.3.63) this is equivalent to the following statement:

A theory is renormalizable if [λ] ≥ 0 .

Thus, the coupling must either be dimensionless or have a positive mass dimension (in
the latter case the theory is called super-renormalizable).
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Fig. 2.13: Examples for non-renormalizable interactions constructed from fermions and gauge
bosons. From left to right, the diagrams carry mass dimensions 5, 6 and 6.

A non-renormalizable theory has a coupling with negative mass dimension: in
that case every n-point function eventually becomes divergent. Here we would need
new renormalization conditions at each order in perturbation theory, and eventually
infinitely many, so we must specify infinitely many constants from outside — the theory
thereby loses its predictive power.

On the other hand, we will see in Sec. 4.4 that non-renormalizable theories are still
perfectly acceptable low-energy effective theories since higher loop diagrams also
come with higher momentum powers. For example, chiral perturbation theory is a non-
renormalizable low-energy expansion of QCD; the non-renormalizable Fermi theory of
weak interactions is the low-energy limit of the electroweak theory. In this sense, non-
renormalizable theories are merely ‘less fundamental’ since they are not applicable at
all energy scales.

Another caveat is that all considerations above are based on perturbation theory. For
example, the Einstein-Hilbert action in quantum gravity defines a non-renormalizable
gauge theory, which is also the reason why it is not considered as a part of the Standard
Model and which has spurred developments e.g. in string theory. There is still the pos-
sibility that a non-renormalizable theory becomes non-perturbatively renormalizable,
i.e., it ‘renormalizes itself’ by developing nontrivial UV fixed points. This leads to the
concept of asymptotic safety, and there are indications that this is what could be at
play in quantum gravity.

In any case, a renormalizable QFT contains only a small number of superficially
divergent amplitudes, namely those with a tree-level counterpart in the Lagrangian,
and therefore it only needs a finite number of renormalization constants. The good
news is that we can read off a theory’s renormalizability directly from its Lagrangian:
we just need to look at the mass dimension of the coupling constant. For a scalar φp

theory only φ3 and φ4 interactions are renormalizable whereas those with p > 4 are not.
Likewise, the QCD Lagrangian is renormalizable, whereas diagrams such as in Fig. 2.13
are not: with [ψ] = 3/2 and [A] = 1, their mass dimensions are greater than 4, and
to compensate this we would need to attach couplings with negative mass dimensions.
Renormalizability restricts the possible forms of interactions dramatically!
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2.3.3 β function and running coupling

Callan-Symanzik equation. Consider again a generic field theory with a field φ or

several fields φi. Then the bare and renormalized fields are related by φB = Z
1/2
φ φ in

analogy to Eq. (2.3.1). Since this implies

δnΓ

δϕnB
= Z

−n/2
φ

δnΓ

δϕn
, (2.3.64)

we can read off how a renormalized 1PI correlation function (Γn = δnΓ/δϕn), which
depends on a set of momenta {pi}, the renormalized coupling g, the renormalized mass
m and the renormalization point µ, is related to its bare counterpart (ΓnB = δnΓ/δϕnB):

Γn({pi}, g,m, µ) = Z
n/2
φ ΓnB({pi}, gB,mB) . (2.3.65)

The bare quantities cannot depend on the renormalization scale µ. If we apply the
derivative µd/dµ and use dΓnB/dµ = 0, we obtain the Callan-Symanzik equation:

(
µ
∂

∂µ
+µ

dg

dµ︸ ︷︷ ︸
β(g)

∂

∂g
+ µ

dm

dµ︸ ︷︷ ︸
mγm(g)

∂

∂m

)
Γn = µ

n

2
Z
n/2−1
φ

dZφ
dµ

ΓnB = n
µ

2

d lnZφ
dµ︸ ︷︷ ︸

γ(g)

Γn . (2.3.66)

Here we defined the β function β(g), the anomalous mass dimension γm(g), and the
anomalous dimension of the field γ(g); they determine the respective change of the
coupling, the mass and the field renormalization under a change of the renormalization
scale. For n-point functions that depend on more than one field we would have to
include a separate γ(g) for each of them.

The Callan-Symanzik equation entails that a shift of the renormalization scale can be compensated
by an appropriate shift of the coupling, the mass and the fields. Suppose for the moment that γ(g) = 0,
so that Zφ is independent of µ. We also set m = 0 to simplify the discussion. The l.h.s of the equation
then implies dΓn/dµ = 0, i.e. also the renormalized n-point function is µ−independent. A change of
the renormalization point can then always be compensated by a shift of the coupling:

Γn({pi}, g(µ), µ) = Γn({pi}, g(µ0), µ0) . (2.3.67)

Moreover, the Callan-Symanzik equation also allows us to compensate the momentum dependence of
an n-point function by a change in its coupling. Consider an n-point function with mass dimension D;
it can be written as

Γn({pi}, g(µ), µ) = µDf

({
pi
µ

}
, g(µ)

)
= µD0 f

({
pi
µ0

}
, g(µ0)

)
, (2.3.68)

where the function f is dimensionless. The first equality is simply a dimensional argument, and the
second follows from Eq. (2.3.67) since the expression is independent of µ. Now replace all momenta
pi → λpi, where λ = µ/µ0:

f

(
λ

{
pi
µ0

}
, g(µ0)

)
= λDf

({
pi
µ0

}
, g(λµ0)

)
. (2.3.69)

Hence, at a fixed renormalization point µ0, a uniform rescaling of momenta can be compensated by an
according shift of the coupling on which the Green function depends. If we dropped our simplifications
γ(g) = 0 and m = 0, the equation would pick up a scaling factor that depends on γ(g), and the
renormalized mass would obtain a scaling factor ∼ γm(g), hence the name ‘anomalous dimensions’.
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Fig. 2.14: Possible shape of the β function and its inverse that appears in Eq. (2.3.70).

β function. The β function of a theory, β(g) = µdg/dµ, encodes the change of the
running coupling with the momentum scale. If we change the scale from µ0 to µ and
define the dimensionless variable t = ln(µ/µ0) ∈ [−∞,∞], which entails µd/dµ = d/dt,
then the change from the coupling g(0) at µ0 to g(t) at µ is given by

β(g) =
dg(t)

dt
⇒

g(t)∫

g(0)

dg

β(g)
=

t∫

0

dt′ = t , (2.3.70)

which can be solved for g(t) if β(g) is known.
To understand this equation better, let us study possible shapes of the β function

(Fig. 2.14). The values g? where β(g?) = 0 are fixed points under a renormalization-
group evolution because the coupling does not change in the vicinity of g? (dg/dt = 0).
Eq. (2.3.70) entails that the l.h.s. must diverge for t → ±∞: this happens when g(t)
runs into the fixed point nearest to g(0), or when it goes to infinity because there is no
zero of β(g) to approach. Whether the fixed point corresponds to t → ∞ or t → −∞
depends on the sign of the β function and the integration direction:

� An ultraviolet (UV) fixed point (t→ +∞) implies g(t) > g(0) and β > 0 or
g(t) < g(0) and β < 0;

� An infrared (IR) fixed point (t → −∞) implies g(t) > g(0) and β < 0 or
g(t) < g(0) and β > 0.

The origin g = 0 is always a fixed point since β(0) = 0. A theory is called

� asymptotically free if g = 0 is a UV fixed point, because then the coupling
becomes small for t→∞ (as we will see below, this is the case for QCD);

� infrared stable if g = 0 is an IR fixed point (e.g. QED, φ4 theory).

The domains separated by fixed points correspond to different theories, unless there
are several couplings in the theory (in which case one ends up with a multidimensional
phase diagram).
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Calculation of the β function. In the following we sketch the calculation of the β
function in QCD (for which Gross, Politzer and Wilczek received the Nobel Prize in
2004). We start with the relation gB = Zg g from Eq. (2.3.1), where the bare coupling
gB does not depend on µ. In four dimensions g is dimensionless, but since we want to
employ dimensional regularization we must work out the dimension [g] of the coupling
in d = 4− ε dimensions. Because the action remains dimensionless and the spacetime
integral is ddx, we have

[L] = d , [ψ] =
d− 1

2
, [A] =

d− 2

2
⇒ [g] = [L]− [ψ /Aψ] =

ε

2
. (2.3.71)

Thus we write gB = Zg g µ
ε/2, where g is the dimensionless coupling in arbitrary

dimensions (this is equivalent to putting factors µε in front of loop integrals such as
Eq. (2.3.48)). The β function then becomes

β(g) =
dg

dt
= µ

d

dµ

(
gB

Zg µε/2

)
= µ

(
−ε

2

gB
Zg µε/2+1

− 1

Z2
g

dZg
dµ

gB
µε/2

)

= −
(
ε

2
+
d

dt
lnZg

)
g .

(2.3.72)

To proceed, we must calculate the g dependence of Zg. From Eq. (2.3.3) we see
that Zg appears in all vertices in the Lagrangian in combination with other renormal-
ization constants, so we could obtain it from any of the combinations {ZA, Zψ, ZΓ},
{ZA, Zc, Z̃Γ}, {ZA, Z3g} or {ZA, Z4g}. In the first case, we must calculate the one-loop
diagrams for the gluon propagator, the quark propagator and the quark-gluon ver-
tex. Because the renormalization constants absorb the infinities, the simplest option
is to use the MS scheme where they only absorb the 1/ε terms and nothing else. For
example, for the quark propagator we have from Eqs. (2.3.21) and (2.3.52):

A(p2) = Zψ + ΣA(p2) = Zψ +
α

2π
CF

∫
dxx

(
2

ε
− γ + ln

4πM2

∆
− 1

)
. (2.3.73)

In our earlier MOM scheme we demanded A(µ2) = 1, which led to Zψ = 1 − ΣA(µ2),
whereas in the MS scheme we only subtract the infinities:

Zψ = 1− α

2π
CF

∫
dxx

2

ε
= 1− g2

(4π)2

2CF
ε

. (2.3.74)

In the same way one computes ZA and ZΓ, where only the highest momentum powers
in the loop integrals contribute since only those produce the divergences and thus the
1/ε terms. Putting everything together, the one-loop result for Zg becomes

Zg = 1− b

ε
g2 + . . . , b =

β0

(4π)2
, β0 = 11− 2

3
Nf , (2.3.75)

where Nf is the number of flavors. Inserting this back into Eq. (2.3.72) gives

d

dt
ln Zg = −2b

ε
g β(g) + . . . ⇒ β(g) = −

(
ε

2
− 2b

ε
g β(g)

)
g

⇒ β(g)

(
1− 2b

ε
g2

)
= −εg

2

⇒ β(g) = −εg
2
− bg3 + . . .

(2.3.76)
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Fig. 2.15: β function in QCD and QED (left) and resulting shapes of the running coupling.

For ε→ 0, we obtain the result

β(g) = −bg3 +O(g5) . (2.3.77)

The negative sign of the β function at g → 0 shows that QCD is indeed an asymptot-
ically free theory, i.e., g(t) becomes small at large momenta t → ∞. Note that this is
only true for β0 > 0, which entails Nf ≤ 16; for more than 16 flavors we would lose
asymptotic freedom. The lowest-order coefficients at O(g3) and O(g5) are independent
of the renormalization scheme, whereas higher-order terms are not.

Running coupling. If we put the result for β(g) back into Eq. (2.3.70), we obtain
the running coupling of QCD:

g(t)∫

g(0)

dg

−bg3
=

1

2b

(
1

g(t)2
− 1

g(0)2

)
= t ⇒ g(t)2 =

g(0)2

1 + 2bt g(0)2
, (2.3.78)

or equivalently α(t) = g(t)2/(4π) = α(0)/[1 + β0

4π α(0) 2t]. Writing 2t = ln(µ2/µ2
0), this

expression has a pole at µ2 = Λ2
QCD defined by

α(0) =
1

β0

4π ln
µ2

0

Λ2
QCD

⇒ α(t) =
1
β0

4π

1

ln
µ2

0

Λ2
QCD

+ ln µ2

µ2
0

=
1

β0

4π ln µ2

Λ2
QCD

. (2.3.79)

From the Callan-Symanzik equation we can interpret the dependence on µ2 as a de-
pendence on q2. Actually we should have started from large spacelike (‘Euclidean’)
momenta q2 = −Q2 < 0, because this is the momentum region where we can compare
to experiment and where α(Q2) is guaranteed to be free of singularities. As long as µ2

and µ2
0 are also spacelike, this does not change the formulas and we arrive at

α(Q2) =
1

β0

4π ln(Q2/Λ2
QCD)

. (2.3.80)

At large momenta where α(Q2) becomes small, quarks and gluons behave as asymptot-
ically free particles and we can apply perturbation theory. On the other hand, this also
means that the coupling increases at small momenta and perturbation theory will even-
tually fail. In that region, nonperturbative effects related to the formation of bound
states become important.
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Fig. 2.16: Overview of α(Q2) measurements from the PDG, taken from P. A. Zyla et al.,
Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

The analogous calculation in QED gives β0 = −4/3 so that β(g → 0) is positive:
QED is infrared stable and the coupling grows with increasing momenta. It actually
grows very slowly (Fig. 2.15), so that perturbation theory works very well over many
orders of magnitude.

ΛQCD is the scale where perturbation theory definitely breaks down since it produces
an unphysical Landau pole in the perturbative expansion. Eq. (2.3.80) and its refine-
ments at higher loop orders allow one to convert the running coupling at a given scale
— see Fig. 2.16 for the current world average of α(M2

Z) — to a value for ΛQCD, which
therefore depends on the order in perturbation theory, the renormalization scheme, and
the number of active flavors at the scale where the coupling is probed (due to the Nf

dependence in β0). Comparison of α(Q2) at four-loop order with experimental results

yields the value Λ
Nf=5

MS
= 210(14) MeV [PDG 2018].

Alternative calculation of the running coupling. Another way to compute the
running coupling is to start from the finite quantities (i.e., the renormalized propagators
and vertices) instead of the divergent ones (the renormalization constants). To do so,
note that the renormalization constants do not only relate the renormalized with the
bare fields, but also the renormalized dressing functions of the propagators and vertices
with their bare counterparts, cf. Eq. (2.3.65). For the gluon and ghost propagator and
the ghost-gluon vertex this reads:

ZB(q2) = ZA Z(q2) , GB(q2) = ZcG(q2) , Γgh(q2) = Z̃Γ ΓBgh(q2) . (2.3.81)

Here, Γgh(q2) = f̃1(q2, q2, q2) is the dressing function attached to the tree-level tensor
of the ghost-gluon vertex in Eq. (2.3.17). We also have gB = Zg g and thus αB = Z2

g α.

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-qcd.pdf
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-qcd.pdf
https://pdg.lbl.gov/2018/reviews/rpp2018-rev-qcd.pdf
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Fig. 2.17: One-loop diagrams for the gluon and ghost propagator and the ghost-gluon vertex.

We can use Eq. (2.3.3) to find combinations that stay unrenormalized, i.e. for which
FB = F , since only those can contain observable information. One such combination
is the ‘running coupling from the ghost-gluon vertex’:

α(q2) = αZ(q2)G2(q2) Γ2
gh(q2) =

Z̃2
Γ

Z2
g ZA Z

2
c︸ ︷︷ ︸

=1

αB(q2) . (2.3.82)

The bare quantities are individually divergent but the divergences must cancel in the
combination.

To determine α(q2), one must calculate the one-loop diagrams in Fig. 2.17 for the
gluon propagator, the ghost propagator and the ghost-gluon vertex. The results for a
general gauge parameter ξ are

Z(q2) = 1− α

4π

[
Nc

2

(
13

3
− ξ
)
− 4

3
TFNf

]
ln
q2

µ2
,

G(q2) = 1− α

4π

[
Nc

3− ξ
4

]
ln
q2

µ2
,

Γgh(q2) = 1− α

4π

[
Nc

ξ

2

]
ln
q2

µ2
.

(2.3.83)

The first term in the bracket for Z(q2) is the sum of the gluon and ghost loop (the
tadpole drops out). The second term comes from the quark loop, where the color trace
is TF = 1/2 in the fundamental representation and we set q2, µ2 � m2. Taking the
squares of G(q2) and Γgh(q2), the terms in the brackets add up to

β0 =
Nc

2

(
13

3
− ξ
)
− 4

3
TFNf +Nc

3− ξ
2

+Nc ξ =
11

3
Nc −

4

3
TFNf , (2.3.84)

where the dependence on the gauge parameter ξ has dropped out. This is identical to
the result (2.3.75) and the resulting running coupling at one-loop order is

α(q2) = α

(
1− α

4π
β0 ln

q2

µ2
+ . . .

)
≈ α

1 + α β0

4π ln q2

µ2

. (2.3.85)
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Fig. 2.18: Qualitative shape of the quark mass function from perturbation theory and non-
perturbative calculations.

In QED, in the absence of gauge-boson self-interactions and ghosts, the relations

in Eq. (2.3.3) reduce to Zg Z
1/2
A = 1 and ZΓ = Zψ, so the analogous definition of the

running coupling is α(q2) = αZ(q2). In that case only the diagram with the fermion
loop in the photon propagator survives, which yields β0 = −4/3 for one species of
fermions. In Eq. (2.3.84) one can see how the screening effect from the quark loop, which
gives a negative contribution to β0 for Nf ≤ 16, is overwhelmed by the ‘antiscreening’
from the remaining diagrams involving gluons and ghosts.

Running quark mass. The quark mass function is another combination that stays
unrenormalized since Eq. (2.3.11) entails

iS−1(p) = A(p2)
(
/p−M(p2)

)
= Zψ iS

−1
B (p) = Zψ AB(p2)

(
/p−MB(p2)

)
(2.3.86)

and thus M(p2) = MB(p2). We already worked out the one-loop result for the mass
function in Eq. (2.3.58). If we define the anomalous mass dimension γm as

γm =
3CF
β0

=
4

11− 2
3 Nf

, (2.3.87)

then we can write to one-loop order for α� 1:

M(p2) = m

[
1− 3α

4π
CF ln

p2

µ2

]
= m

[
1− γm

β0

4π
α ln

p2

µ2

]

= m

[
1 +

β0

4π
α ln

p2

µ2

]−γm
= m

[
α(p2)

α(µ2)

]γm

= m

[
1
2 ln(µ2/Λ2

QCD)
1
2 ln(p2/Λ2

QCD)

]γm
=

m̂[
1
2 ln(p2/Λ2

QCD)
]γm .

(2.3.88)

This gives the one-loop running of the quark mass function at large p2. It is also
independent of the gauge parameter ξ, whereas the result for A(p2) is

A(p2) = 1− ξ CF
α

4π
ln
p2

µ2
. (2.3.89)



62 QCD

Unfortunately, QCD perturbation theory turns out to be of limited use in this
case because for light quarks the biggest contribution to the mass function M(p2) is
generated non-perturbatively by spontaneous chiral symmetry breaking (Fig. 2.18).
We will return to this point in Sec. 4.2.

From Eq. (2.3.83) we can also read off the anomalous dimensions for the gluon and ghost propagators
and the ghost-gluon vertex. Writing

Z(q2) ∝ 1

[ln(q2/Λ2)]γgl
, G(q2) ∝ 1

[ln(q2/Λ2)]γgh
, Γgh(q2) ∝ 1

[ln(q2/Λ2)]γgh-gl
(2.3.90)

we find

γgl =
1

β0

[
Nc
2

(
13

3
− ξ
)
− 4

3
TFNf

]
, γgl =

1

β0

[
Nc

3− ξ
4

]
, γgh-gl =

1

β0

[
Nc

ξ

2

]
, (2.3.91)

where γgl + 2γgh + 2γgh-gl = 1. In Landau-gauge Yang-Mills theory (ξ = 0, Nf = 0) this reduces to

γgl =
13

22
, γgh =

9

44
, γgh-gl = 0 . (2.3.92)
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