Split SUSY: Theoretical aspects

Nicolás Bernal LPT Orsay

Euro-GDR SUSY - Bruxelles

in collaboration with A. DJOUADI and P. SLAVICH JHEP 0707:016,2007

14 November 2007

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
● O	0	0	000000	0

Supersymmetry & MSSM

→ Hierarchy problem

Light fermionic partners

- Gauge coupling unification
- ✓ A candidate for cold dark matter

But light scalars brings along...

- **×** Potentially > 100 parameters
- ✗ Quite light Higgs boson mass (tension with LEP searches)
- \mathbf{x} New sources of FCNC and CP violation
- New contributions to SM precision observables
- ✗ Fast proton decay from dimension-five operators

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
•0	0	0	000000	0

Supersymmetry & MSSM

→ Hierarchy problem

Light fermionic partners

- ✓ Gauge coupling unification
- ✓ A candidate for cold dark matter

But light scalars brings along...

- **×** Potentially > 100 parameters
- ✗ Quite light Higgs boson mass (tension with LEP searches)
- ✗ New sources of FCNC and CP violation
- New contributions to SM precision observables
- Fast proton decay from dimension-five operators

Scalar superpartners are needed to be light only to avoid fine tuning. If we accept them to be heavy, we can retain the advantages of weak-scale SUSY and get rid of all its disadvantages. hep-th/0405159 Arkani-Hamed & Dimopoulos hep-ph/0406088 Giudice & Romanino hep-ph/0409232

Motivation ●○	Heavy scalars	Spectrum ○	Phenomenology	Conclusions

Supersymmetry & MSSM

→ Hierarchy problem

Light fermionic partners

- ✓ Gauge coupling unification
- A candidate for cold dark matter

But light scalars brings along...

- **X** Potentially > 100 parameters
- ✗ Quite light Higgs boson mass (tension with LEP searches)
- $\pmb{\mathsf{X}}$ New sources of FCNC and CP violation
- New contributions to SM precision observables
- Fast proton decay from dimension-five operators

If we allow scalars to be heavy

- ✓ Gauge coupling unification
- ✓ A candidate for cold dark matter
- ✓ 5 parameters
- ✓ Higgs boson mass larger

× Fine-tuning more important

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
0●	0	Ō	000000	0

The MSSM with heavy scalars

There is no compelling criterion to define the maximal acceptable amount of fine tuning and the choice of the upper bound on the scalar mass scale is somewhat subjective.

Spectrum	
 Scalars Squarks Sleptons Higgs bosons but lighter one 	at $M_S \gtrsim 10^4 { m GeV}$
► SM-like Higgs boson H at 1	EW scale \leftarrow fine-tuning
 Fermionic superpartners 	
$\left. \begin{array}{c} \text{Charginos } \tilde{\chi}^{\pm} \\ \text{Neutralinos } \tilde{\chi}^{0} \\ \text{Gluino } \tilde{g} \end{array} \right\} \text{ at EW scale}$	(protected by symmetries)

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
	•	O	000000	O
Effective	Lagrangian			

$$\mathcal{L} \supset m^{2}H^{\dagger}H - \frac{\lambda}{2} \left(H^{\dagger}H\right)^{2} - \left[h_{ij}^{u}\bar{q}_{j}u_{i}\epsilon H^{*} + h_{ij}^{d}\bar{q}_{j}d_{i}H + h_{ij}^{e}\bar{\ell}_{j}e_{i}H \right]$$
$$+ \frac{M_{3}}{2}\tilde{g}^{A}\tilde{g}^{A} + \frac{M_{2}}{2}\tilde{W}^{a}\tilde{W}^{a} + \frac{M_{1}}{2}\tilde{B}\tilde{B} + \mu\tilde{H}_{u}^{T}\epsilon\tilde{H}_{d}$$
$$+ \frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_{u}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{u}'\tilde{B}\right)\tilde{H}_{u} + \frac{H^{T}\epsilon}{\sqrt{2}}\left(-\tilde{g}_{d}\sigma^{a}\tilde{W}^{a} + \tilde{g}_{d}'\tilde{B}\right)\tilde{H}_{d} + \text{h.c.}$$

Standard Model like-Higgs boson

$$H = -\cos\beta \,\epsilon \, H_d^* + \sin\beta \, H_u$$

ton R -	$\frac{v_2}{v_1}$ v _{1,2} vev for the Higgs fields	above M_S
$tanp = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{v_2}{v_1}$ v _{1,2} vev for the Higgs fields Higgs mixing angle	below M_S

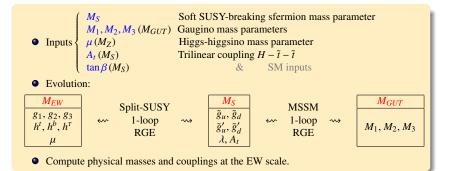
 $\tilde{g}_{u,d}, \tilde{g}'_{u,d}$ Higgs-higgsino-gaugino effective couplings

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
00	•	○	000000	O
Effective	Lagrangian			

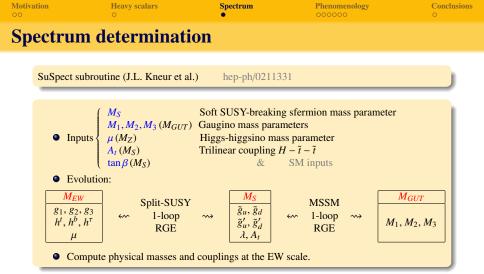
$$\mathcal{L} \supset m^2 H^{\dagger} H - \frac{\lambda}{2} \left(H^{\dagger} H \right)^2 - \left[h_{ij}^u \bar{q}_j u_i \epsilon H^* + h_{ij}^d \bar{q}_j d_i H + h_{ij}^e \bar{\ell}_j e_i H \right. \\ \left. + \frac{M_3}{2} \, \tilde{g}^A \tilde{g}^A + \frac{M_2}{2} \, \tilde{W}^a \tilde{W}^a + \frac{M_1}{2} \tilde{B} \tilde{B} + \mu \, \tilde{H}_u^T \epsilon \tilde{H}_d \right. \\ \left. + \frac{H^{\dagger}}{\sqrt{2}} \left(\tilde{g}_u \sigma^a \tilde{W}^a + \tilde{g}'_u \tilde{B} \right) \tilde{H}_u + \frac{H^T \epsilon}{\sqrt{2}} \left(- \tilde{g}_d \sigma^a \tilde{W}^a + \tilde{g}'_d \tilde{B} \right) \tilde{H}_d + \text{h.c.} \right]$$

Matching conditions at the scale M_S

$$\lambda(M_S) = \frac{1}{4} \begin{bmatrix} g^2(M_S) + g'^2(M_S) \end{bmatrix} \cos^2 2\beta$$

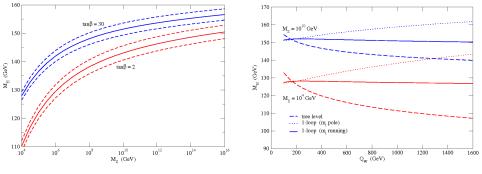

$$h_{ij}^u(M_S) = \lambda_{ij}^{u*}(M_S) \sin\beta, \qquad h_{ij}^{d,e}(M_S) = \lambda_{ij}^{d,e*}(M_S) \cos\beta$$

$$\tilde{g}_u(M_S) = g(M_S) \sin\beta, \qquad \tilde{g}_d(M_S) = g(M_S) \cos\beta$$


$$\tilde{g}_u'(M_S) = g'(M_S) \sin\beta, \qquad \tilde{g}_d'(M_S) = g'(M_S) \cos\beta$$

SuSpect subroutine (J.L. Kneur et al.) hep-ph/0211331

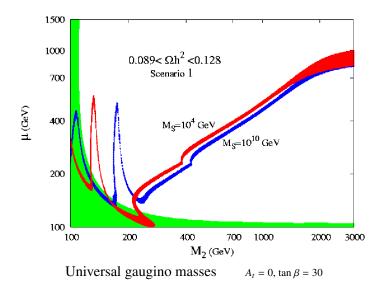
If the scalars are heavy, they will lead to significant quantum corrections, enhanced by large $log(M_{EWSB}/M_S)$. So, one has to properly decouple the heavy states from the low-energy theory and resum the large logarithmic corrections by means of RGEs.


+ :	dapt this scenario :
	Hdecay: Higgs boson decay $H - \tilde{\chi} - \tilde{\chi}$ coupling $H \rightarrow \tilde{\chi}\tilde{\chi}$ Sdecay: χ^0 and χ^+ decays \tilde{g} decays:P. Gambino, G.F. Giudice, P. Slavich, Nucl.Phys.B726:35-52,2005
	Sdecay: χ^0 and χ^+ decays
1	<i>g</i> decays: P. Gambino, G.F. Giudice, P. Slavich, Nucl.Phys.B726:35-52,2005
	subroutine 'omega' (M. Drees & al.) with $H \to WW^* \to Wff$

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
	O	○	•00000	O
Higgs mass	5			

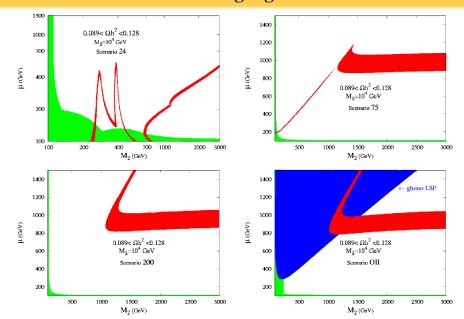
$$M_{H} = \sqrt{\frac{\lambda(Q)}{\sqrt{2} G_{F}}} \left[1 + \delta^{\text{SM}}(Q) + \delta^{\chi}(Q) \right]$$

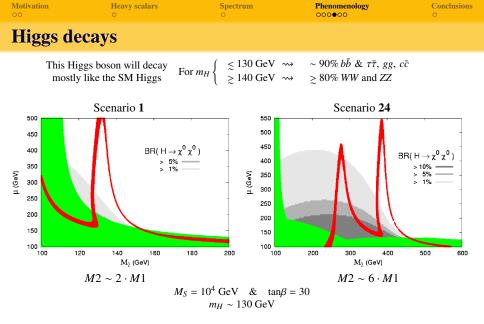
1


The radiative corrections to the Higgs mass are enhanced by a large logarithm

 $\mu = m_{1/2} = 500 \text{ GeV}$ $A_t = 0$ $M_t = 170.9 \text{ GeV}$

Collider & Dark Matter constraints


Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
00	0	Ō	000000	0


Dark Matter: non-universal gaugino masses

F_{Φ}	<i>M</i> ₁	M_2	M_3
1	1 (~ 1.0)	1 (~ 2.0)	1 (~ 7.8)
24	1 (~ 1.0)	3 (~ 6.3)	-2 (~ 15.2)
75	5 (~ 1.0)	$-3(\sim -1.2)$	−1 (~ −1.5)
200	10 (~ 2.4)	2 (~ 1.0)	1 (~ 1.9)
OII	53/5 (~ 1.4)	5 (~ 1.3)	1 (~ 1.0)

Relative gaugino masses at M_{GUT} (M_Z) for differents non-universal gaugino masses cases, with $M_S = 10^4$ GeV.

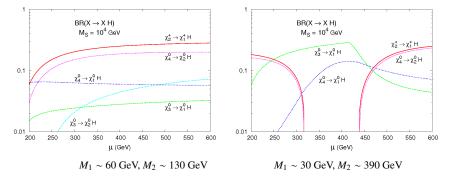
Mesurable at the ILC!

Motivation	Heavy scalars	Spectrum	Phenomenology	Conclusions
	○	O	000000	O
Higgs de	cays			

450 400 350 $\Delta\Gamma(H \rightarrow \gamma \gamma) / \Gamma$ (%) $\frac{\Gamma_{HS} - \Gamma_{SM}}{\Gamma_{SM}}$ $\frac{\Delta I}{\Gamma}$ μ (GeV) 300 1% $M_S = 10^4 \text{ GeV}$ 250 $\tan\beta = 30$ 200 $m_H \sim 130 \text{ GeV}$ 150 100 100 150 200 250 300 350 400 450 M_2 (GeV)

 $H \rightarrow \gamma \gamma$, $Z \gamma$ very rare but theoretically interesting!

 $\chi^+\chi^-h$ coupling not proportionally to $m_{\chi} \Rightarrow$ amplitudes are damped by inverse power of m_{χ} . **Potentially observable at the** $\gamma\gamma$ option of the **ILC**! \rightsquigarrow Contributions to $H \rightarrow Z\gamma$ in general smaller.


Chargino & Neutralino decays: Higgs production

$$\begin{cases} \chi_i \to \chi_j V^* \to \chi_j f \tilde{f} \\ \chi_i \to f \tilde{f}^* \to f \tilde{f} \chi_j \\ \chi_i \to \chi_j H \\ \chi_i^0 \to \chi_j^0 \gamma < 1\% \end{cases}$$

strongly suppressed by heavy scalars

Scenario 1

Motivat 00	tion Heavy scalars ○	Spectrum ○	Phenomenology 000000	Conclusions •		
Co	Conclusions & Prospects					
	 The MSSM, in the case when We still have {			rio.		
		But we require a	a large fine-tuning for the Hi	iggs boson.		
	 We have studied this model w RGE for all couplings, RC for Higgs, neutrali universal and non-univ 	, no, chargino and glui versal gaugino masses				

scenario implemented in SuSpect,

۲

	(collider searches and high-precision measurements
Constraints 4	WMAP – DM relique density
	gluino lifetime

 Phenomenology: Higgs & sparticles (charginos, neutralinos, gluinos)
 Differences between SM and Heavy scalars Universal and non-universal scenarios