Single Higgs-boson production through photon fusion at Linear Colliders within the general 2HDM

Nicolás Bernal (ESR)

Institut de Ciències del Cosmos

March 11th 2009

Work in collaboration with J. Solà and D. López-Val

2HDM 0000	Constraints 0000	γγ scattering	e^+e^- scattering	Conclusions
Outline				

2 Constraints

- Oirect photon scattering
- 4 $\gamma\gamma$ fusion in e^+e^- collisions
- 5 Conclusions and prospects

2HDM	Constraints	γγ scattering	e^+e^- scattering	Conclusions
0000	0000	0000000000	00	
Outline				

- 2 Constraints
- 3 Direct photon scattering
- 4 $\gamma\gamma$ fusion in e^+e^- collisions
- 5 Conclusions and prospects

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
0000				

Canonical extension of the SM Higgs sector with a second $SU(2)_{\text{\tiny L}}$ doublet with weak hypercharge Y=+1

$$\Phi_1 = \begin{pmatrix} \Phi_1^+ \\ \Phi_1^0 \end{pmatrix} \quad (Y = +1) \qquad \Phi_2 = \begin{pmatrix} \Phi_2^+ \\ \Phi_2^0 \end{pmatrix} \quad (Y = +1)$$

The most general CP-conserving, gauge invariant, renormalizable Higgs potential spontaneously breaking $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$

$$\begin{split} V(\Phi_{1},\Phi_{2}) &= \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} - v_{1}^{2} \right)^{2} + \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} - v_{2}^{2} \right)^{2} \\ &+ \lambda_{3} \left[\left(\Phi_{1}^{\dagger} \Phi_{1} - v_{1}^{2} \right) + \left(\Phi_{2}^{\dagger} \Phi_{2} - v_{2}^{2} \right) \right]^{2} \\ &+ \lambda_{4} \left[\left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) - \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) \right] \\ &+ \lambda_{5} \left[\operatorname{Re} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) - v_{1} v_{2} \right]^{2} + \lambda_{6} \left[\operatorname{Im} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \right]^{2} \end{split}$$

We also impose the discrete symmetry $\Phi_i \rightarrow (-1)^i \Phi_i$, in order to avoid tree-level Flavor Changing Neutral Currents (FCNC)

Symmetry softly broken by: $\lambda_5 \operatorname{Re} \left(\Phi_1^{\dagger} \Phi_2 \right)^2$

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
⊙●⊙⊙	0000	0000000000	oo	

Canonical extension of the SM Higgs sector with a second $SU(2)_L$ doublet with weak hypercharge Y = +1

$$\Phi_{1} = \begin{pmatrix} \Phi_{1}^{+} \\ \frac{\nu_{1} + \phi_{1}^{0} + i\chi_{1}^{0}}{\sqrt{2}} \end{pmatrix} \qquad \Phi_{2} = \begin{pmatrix} \Phi_{2}^{+} \\ \frac{\nu_{2} + \phi_{2}^{0} + i\chi_{2}^{0}}{\sqrt{2}} \end{pmatrix}$$

The doublets contain 8 real degrees of freedom

➤ 3 Goldstone bosons: G⁰ and G[±]

> 5 physical fields:

✓ 2 *CP*-even states h^0 and H^0

- ✓ 1 CP-odd state A⁰
- 2 charged states H⁺ and H⁻

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
0000				

7 free dimensionless real parameters introduced in the Higgs potential

6 couplings λ_{1...6}

> 2 vacuum expectation values $v_{1,2}$

$$v_1^2 + v_2^2 = v^2 = rac{1}{\sqrt{2}\,G_F} \sim (248~{
m GeV})^2$$

They could be related to physical quantities

- ✓ Masses of the Higgs bosons: M_h , M_H , M_A and $M_{H^{\pm}}$
- ✓ the ratio of the vevs: $tan \beta \equiv \frac{\langle H_2^0 \rangle}{\langle H_1^0 \rangle} = \frac{v_2}{v_1}$
- ✓ the mixing angle α between the two *CP*-even states
- \checkmark the coupling λ_5

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
0000				

There are two possibilities to couple the Higgs doublets to fermions:

- Type-I: One Higgs doublet (\$\Phi_2\$) couples to all fermions, whereas the other (\$\Phi_1\$) does not couple to them at all
- Type-II: One Higgs doublet (Φ₁) couples only to down-like fermions and the other (Φ₂) only to up-like ones The MSSM is a type-II 2HDM

2HDM 0000	Constraints	γγ scattering ooooooooooo	e^+e^- scattering	Conclusions
Outline				

- 3 Direct photon scattering
- 4 $\gamma\gamma$ fusion in e^+e^- collisions
- 6 Conclusions and prospects

	0000		
Deatric	ational O(b		

Restrictions: $\mathcal{B}(b \rightarrow s\gamma)$

- We have strong constraints coming from flavor physics $\mathcal{B}(\bar{B} \to X_s \gamma) \sim (3.55 \pm 0.25) \cdot 10^{-4}$ from BaBar and Belle $\mathcal{B}(\bar{B} \to X_s \gamma) \sim (3.15 \pm 0.23) \cdot 10^{-4}$ SM NNLO prediction
- The good agreement between the SM prediction and the experimental result puts severe constraints on the flavor structure of NP models.

New charged-particles contribute to this rare decay.

Leading-order contributions due to the charged Higgs H^{\pm}

2HDM	Constraints	γγ scattering	e ⁺ e [−] scattering	Conclusions
0000	●○○○	ooooooooooo	○○	
Dootri	otional (Ch			

Restrictions: $\mathcal{B}(b \to s\gamma)$

We have strong constraints coming from flavor physics $\mathcal{B}(\bar{B} \to X_s \gamma) \sim (3.55 \pm 0.25) \cdot 10^{-4}$ from BaBar and Belle $\mathcal{B}(\bar{B} \to X_s \gamma) \sim (3.15 \pm 0.23) \cdot 10^{-4}$ SM NNLO prediction

The good agreement between the SM prediction and the experimental result puts severe constraints on the flavor structure of NP models.

New charged-particles contribute to this rare decay.

The charged Higgs bosons contribution:

- ✓ positive
- ✓ increases when $M_{H^{\pm}}$ decreases

Type-I 2HDM:	Couplings <i>H</i> [±] <i>qq</i> ′	$\propto 1/\tan\beta$	
	Couplings high	ly suppressed for $tan\beta$	> 1
Type-II 2HDM:	Couplings <i>H</i> [±] <i>qq</i> ′	∝ tanβ	
	Couplings enha	anced for $tan \beta > 1$	
	Restriction \rightarrow	<i>М</i> _{н±} > 295 GeV	Misiak et al., 20

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	οοοοοοοοοοο	00	0000
-				

Restrictions: $\delta \rho$

> rho-parameter: $\rho = \rho_0 + \delta \rho$

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

One-loop corrections induced by Higgs bosons Barbieri & Maiani, 1983

$$\begin{split} \delta\rho_{2HDM} &= \frac{G_F}{8\sqrt{2}\,\pi^2} \left\{ M_{H^\pm}^2 \left[1 - \frac{M_{A^0}^2}{M_{H^\pm}^2 - M_{A^0}^2} \,\ln\frac{M_{H^\pm}^2}{M_{A^0}^2} \right] \\ &+ \cos^2(\beta - \alpha) \,M_{h^0}^2 \left[\frac{M_{A^0}^2}{M_{A^0}^2 - M_{h^0}^2} \,\ln\frac{M_{A^0}^2}{M_{h^0}^2} - \frac{M_{H^\pm}^2}{M_{H^\pm}^2 - M_{h^0}^2} \,\ln\frac{M_{H^\pm}^2}{M_{h^0}^2} \right] \\ &+ \sin^2(\beta - \alpha) \,M_{H^0}^2 \left[\frac{M_{A^0}^2}{M_{A^0}^2 - M_{H^0}^2} \,\ln\frac{M_{A^0}^2}{M_{H^0}^2} - \frac{M_{H^\pm}^2}{M_{H^\pm}^2 - M_{H^0}^2} \,\ln\frac{M_{H^\pm}^2}{M_{H^\pm}^2} \right] \right\} \end{split}$$

Experimental measurements: $|\delta \rho_{2HDM}| \lesssim 10^{-3}$ $\delta \rho_{2HDM}$ vanish for $M_A \rightarrow M_{H^{\pm}}$

We will demand $\rightarrow M_A \sim M_{H^{\pm}}$

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
	0000			

- ➤ Perturbativity on the Yukawas They could receive large enhancements at large or small tan β. Yukawas with H[±]: Y_t ∝ $\frac{m_t}{v \tan \beta}$ Y_b ∝ $\frac{m_b \tan \beta}{v}$ → 0.3 < tan β ≤ 60</p>
 Yukawas With H[±]: Y_t ≈ $\frac{m_t}{v \tan \beta}$ Y_b ≈ $\frac{m_b \tan \beta}{v}$ El Kaffas, Osland & Greid, 2007
- Perturbative unitarity on the Higgs self-couplings They could receive large enhancements at low or large tanβ.
 We use a condition à la Lee-Quigg-Thacker
 - trilinear Higgs self coupling

$$|C_{HHH}| \le \left|\lambda_{HHH}^{(SM)}(M_{h_{SM}} \simeq 1 \text{ TeV})\right| = 3 \frac{M_{h_{SM}}^2}{v} \Big|_{M_{h_{SM}} = 1 \text{ TeV}}$$

✓ quartic Higgs self coupling

$$|C_{HHHH}| \le \left|\lambda_{HHHH}^{(SM)}(M_{h_{SM}} \simeq 1 \text{ TeV})\right| = \left. 3 \frac{M_{h_{SM}}^2}{v^2} \right|_{M_{h_{SM}} = 1 \text{ TeV}}$$

X Note that there is no consensus on how to impose unitarity! Kanemura, Kubota & Takasugi, 1993; Akeroyd, Arhrib & Naimi, 2000; Horejsi & Kladiva, 1006

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
	0000			

Restrictions: Vacuum stability

Vacuum stability We assume that the quartic interaction terms in the potential do not give negative contribution for all directions of scalar fields at each energy scale up to A Require a Higgs potential bounded from below

 $\lambda_{1} + \lambda_{3} > 0 \qquad \lambda_{2} + \lambda_{3} > 0$ $2\sqrt{(\lambda_{1} + \lambda_{3})(\lambda_{2} + \lambda_{3})} + 2\lambda_{3} + \lambda_{4} + \frac{1}{2}\operatorname{Min}\left(0, \lambda_{5} + \lambda_{6} - 2\lambda_{4} - |\lambda_{5} - \lambda_{6}|\right) > 0$ Kanemura, Kasai & Okada, 1999

2HDM 0000	Constraints 0000	γγ scattering	e ⁺ e ⁻ scattering 00	Conclusions
Outline				

2 Constraints

- Oirect photon scattering
- 4 $\gamma\gamma$ fusion in e^+e^- collisions
- 5 Conclusions and prospects

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
		•000000000		

One-loop Feynman diagrams

One-loop diagrams describing the process $\gamma\gamma \rightarrow h$, within the 2HDM

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions
		•000000000		

One-loop Feynman diagrams

SM contributions:

- * Heavy fermions t, b
- * Vector bosons W^{\pm}
- * Goldstone bosons G^{\pm}
- + 2HDM contributions: * Charged Higgs H[±]

One-loop diagrams describing the process $\gamma\gamma \rightarrow h$, within the 2HDM

2HDM 0000	Constraints 0000	γγ scattering o●ooooooooo	e^+e^- scattering	Conclusions

$$\hat{\sigma}(\gamma\gamma \rightarrow h) = \sigma(\gamma\gamma \rightarrow h) \cdot M_h^2 \,\delta\left(s - M_h^2\right)$$

s is the center-of-mass energy.

Dirac Delta is a trademark feature of the 2 \rightarrow 1 phase space.

$$\sigma(\gamma\gamma \to h) = \frac{\pi}{M_h^4} \sum_{\eta_1 \eta_2} \left| M(\gamma\gamma \to h) \right|^2$$

Sum performed over polarizations.

Cross section

$$\delta\left(s-M_{h}^{2}\right) \rightarrow \frac{1}{\pi} \frac{s\,\Gamma_{h}/M_{h}}{\left(s-M_{h}^{2}\right)^{2}+\left(s\,\Gamma_{h}/M_{h}\right)^{2}}$$

Substitution of the Breit-Wigner form of the Higgs width, in place of the zero-width Delta distribution.

Calculations performed using *FeynArts, FormCalc* & *LoopTools* \checkmark We have implemented the 2 \rightarrow 1 phase space. T. Hahn

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	oo●oooooooo	00	

Trilinear coupling

The phenomenology of $\gamma \gamma \rightarrow h$ will be lead by the coupling H^+H^-h .

- → This coupling has not a fixed value in the 2HDM
- → It could receive large enhancements!

Trilinear coupling H^+H^-h

$$C_{H^+H^-h} = \frac{i}{v} \left[\sin(\beta - \alpha) \left(M_h^2 - 2 M_{H^{\pm}}^2 \right) - \frac{\cos(\beta - \alpha)}{\sin 2\beta} \left(2 M_h^2 - \lambda_5 v^2 \right) \right]$$

Maximum enhancement for:

- > low and high values of $\sin \alpha$
- low and high values of $\tan \beta$ Remember that $\tan \beta < 1$ are disadvantaged

El Kaffas, Osland & Greid, 2007

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	000●000000	00	

Benchmarks

Higgs mass parameters used

	Set I	Set II	Set III	Set IV
M _h [GeV]	115	150	200	200
M _{H[±]} [GeV]	105	105	300	350
<i>М_н</i> ₀ [GeV]	165	200	250	250
<i>M</i> _A [GeV]	100	110	290	340
	Туре І			

- The dynamics will be determined by M_h and M_{H[±]}
- However, the constraints depend on all the mass parameters
- Set I and Set II only suitable for Type-I 2HDM (M_{H[±]} > 295 GeV)

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	oooo●oooooo	00	

 $\sigma(\gamma\gamma \to h)$

The maximum takes place for $\tan \beta = 1.70$, $\sin \alpha = -0.86$ and $\lambda_5 = -25$ $\sigma_{Max}(\gamma\gamma \rightarrow h) \sim 2.53$ pb $\sigma(\gamma\gamma \rightarrow h_{SM}) \sim 0.13$ pb for $M_{h_{SM}} = 115$ GeV Sizable region where the production cross section stays high, bordering the range of some picobarns.

Regions allowed by constraints and corresponding to a cross section 10% bigger than the SM one.

- Even if the cross-section should be greater for bigger values of tan β, the available phase space will limit the growth
- > Unitarity constraints limit $\tan \beta \lesssim 5$

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	oooooo●oooo	oo	0000
$\sigma(\gamma\gamma \rightarrow h$				

 $\langle \rangle$

The coupling H^+H^-h maximized for high $|\lambda_5|$ For high values of $|\lambda_5|$: > threshold production of 2 real H^{\pm} at $M_h = 2 \cdot M_{H^{\pm}} \sim 210 \text{ GeV}$ \rightarrow enhancement > threshold production of 2 real W^{\pm} and G^{\pm} at $M_h = 2 \cdot M_W \sim 160 \text{ GeV}$ \rightarrow destructive interference > enhancement could reach a factor O(100)in the most optimistic case

Using $\tan \beta = 1.70$, $\sin \alpha = -0.86$ and Set I.

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	ooooooooooo	00	
$\sigma(\gamma\gamma \to h)$	1)			

For low $M_{H^{\pm}}$, $\gamma\gamma h$ coupling dominated by the H^{\pm} corrections

> Therefore, the increase of $M_{H^{\pm}}$ hampers the enhancement.

 Strong suppression effect due to destructive interference (fermion, gauge and Higgs bosons)

Ellis, Gaillard & Nanopoulos, 76

Using $\tan \beta = 1.70$, $\sin \alpha = -0.86$ and Set I.

2HDM	Constraints	γγ scattering	e ⁺ e [−] scattering	Conclusions
0000	0000	oooooooooooo	oo	
$\sigma(\gamma\gamma \to t)$	1)			

Maximum cross section

 $\langle \prime \prime \prime$

	Set I	Set II	Set III	Set IV
M _h [GeV]	115	150	200	200
M _{H[±]} [GeV]	105	105	300	350
$\sigma_{Max}(\gamma\gamma \rightarrow h)$ [pb]	2.53	3.51	0.33	0.33
$\sigma(\gamma\gamma \rightarrow h_{SM})$ [pb]	0.13	0.20	0.	28
	Туре І			

For Set II and III, both type-I and type-II lead to the same σ (up to ~ 1%)

Possible enhancement coming from the Yukawas $hq\bar{q}$

Could be important for low $\tan \beta$: $Y_t \propto m_t \frac{\cos \alpha}{\sin \beta}$ $Y_b \propto m_b \left(\frac{\cos \alpha}{\sin \beta}\right)^{\pm 1}$ but $\tan \beta < 1$ are disadvantaged... El Kaffas, Osland & Greid, 2007 \rightarrow For low $\tan \beta$, the enhancement is $\leq 15\%$

Let us recall that a photon collider is an option of a lepton collider.

It is possible to take into account the conversion $e^+e^- o \gamma\gamma$ by the convolution

$$\sigma(e^+e^- o \gamma\gamma o h)(s) = \sum_{\langle ij
angle} \int_0^1 d au \, rac{d\, \mathcal{L}^{ee}_{ij}}{d au} \, \hat{\sigma}_{\eta_i\,\eta_j}(\gamma\gamma o h)(au\, s)$$

- * $\hat{\sigma}_{\eta_i \eta_j}(\gamma \gamma \rightarrow h)$: partonic cross section
- * τ : fraction of the energy carried by the photon
- * \mathcal{L}_{ii}^{ee} stands for the photon luminosity distribution

$$\frac{d \, \mathcal{L}_{ij}^{ee}}{d\tau} = \int_{\tau}^{1} \frac{dx}{x} \, \frac{1}{1 + \delta_{ij}} \, \left[f_{i/e_1}(x) \, f_{j/e_2}(\tau/x) + f_{j/e_1}(x) \, f_{i/e_2}(\tau/x) \right]$$

* f_{i/e_1} denotes the photon density functions.

We use the ones provided by CompAZ

Telnov, 2006 & Żarnecki, 2003

2HDM	Constraints	γγ scattering	e ⁺ e [−] scattering	Conclusions
0000	0000	0000000000	oo	
-(a ⁺ a ⁻	(L)			

- The shape of the cross section lead by the parametrization of the photon energy spectrum.
- Huge number of events for low center-of-mass energy.
- Due to interference effects, the enhancement capabilities become partially reduced.

2HDM 0000	Constraints 0000	$\gamma\gamma$ scattering	e^+e^- scattering	Conclusions
Outline				

2 Constraints

- 3 Direct photon scattering
- 4 $\gamma\gamma$ fusion in e^+e^- collisions
- 5 Conclusions and prospects

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	0000000000	●○	
$\sigma(a^+a^-)$	$\sim 0^{+} 0^{-} \alpha^{*} \alpha^{*}$	a^+a^-b		

Cross-section for this fusion process grow with s up to very high values of s, roughly as:

$$\sigma \sim rac{lpha^4}{M^2} \log^2 rac{s}{m_{ heta}^2} \log^n rac{s}{M^2}$$

 $n \ge 1$ given by high energy behavior of the *partonic* process

Weizsäcker-Williams equivalent photon approximation

Quasi-singular collinear behavior

$$\sigma(e^+e^- \to e^+e^-X) = \left[\frac{\alpha_{em}}{2\pi} \log \frac{s}{4 m_e^2}\right]^2 \int_{M_X^2/s}^{1} d\tau f(\tau) \, \sigma_{\gamma\gamma \to X}(\tau \, s)$$

Weizsäcker-Williams distribution function

$$f(\tau) = \frac{1}{\tau} \left[(2+\tau)^2 \log \frac{1}{\tau} - 2(1-\tau)(3+\tau) \right]$$

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	οοοοοοοοοοο	o●	

- ▶ Logarithmic evolution of the cross section $\sigma(e^+e^- \rightarrow e^+e^-h)$
- After exceeding the threshold, σ increases up to ~ 10⁻² pb ~ 5000 events for £ = 500 fb⁻¹

Possible enhancement of almost a factor 20

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	ooooooooooo	oo	
Outline				

2 Constraints

- 3 Direct photon scattering
- 4 $\gamma\gamma$ fusion in e^+e^- collisions
- 5 Conclusions and prospects

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	οοοοοοοοοοο	00	•ooo
Conclus	sions			

We analyse the production of a single Higgs boson within the 2HDM through the following mechanisms:

- the direct collision of real photons in $\gamma\gamma$ colliders
- the fusion of virtual photons in *e*⁺*e*⁻ colliders

 $\gamma\gamma h$ effective interaction generated by charged particle loops In particular by H^{\pm} loops and then possible enhancement due to the $H^{+}H^{-}h$ trilinear coupling

We take into account the restrictions coming from:

- EW precision data: $\mathcal{B}(b \to s\gamma), \delta\rho$
- perturbativity and unitarity bounds
- vacuum stability

2HDM	Constraints	γγ scattering	e^+e^- scattering	Conclusions
0000	0000	0000000000		0000

Conclusions

In the most favorable scenarios $\sigma(\gamma\gamma \rightarrow h) \sim 2.5 \text{ pb}$ for $M_h = 115 \text{ GeV}$, 20 times above the SM prediction.

- enhancement given by the H^+H^-h coupling
- large $|\lambda_5|$ and low tan β values needed
- light H^{\pm} needed \implies Type-I 2HDM
- $\bullet\,$ enhancement reduced by destructive interferences with $W^{\scriptscriptstyle\pm}$ and fermions
- for higher M_h , the enhancement could be more important

For very low $\tan\beta$ and λ_5 , no enhancement due to trilinear couplings, However possible enhancement ($\leq 15\%$) produce by Yukawa couplings.

For $M_{H^{\pm}}$ > 300 GeV, the differences between type-I and type-II O(1%)

In the chosen benchmarks, the H^0 and A^0 production cross-sections are of the order of $O(10^{-2})$ pb

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	0000000000	00	oo●o

Conclusions

$\gamma\gamma$ option of a e^+e^- collider

We keep the track that $\gamma\gamma$ collisions are generated upon e^+e^- beams: $e^+e^- \rightarrow \gamma\gamma \rightarrow h$

The expected number of events will fall above 10^4 per $\mathcal{L} = 100$ fb⁻¹ in the typical energy range of the ILC: 500 - 1000 GeV.

e^+e^- collider

 $\gamma\gamma$ fusion: $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-h$

 Cross-section exhibits a logarithmic growing with s typical of vector boson fusion process

> Cross-section overcomes the value of 0.01 pb for $\sqrt{s} = 500$ GeV and a $M_h = 115$ GeV

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	0000000000	oo	○○○●

and perspectives...

Higgs boson produced at rest (not boosted) The Higgs decay will lead to back-to-back heavy-quark jets $(b\bar{b})$ The analysis of the invariant mass distribution could lead to a very precise determination of the Higgs mass

Together with other production channels $e^+e^- \rightarrow HH$ and $e^+e^- \rightarrow HHH$, the single Higgs boson production provides a strong insight into the structure of the EWSB

Single Higgs-boson production through photon fusion within the MSSM The trilinear couplings are no longer free but fixed by gauge symmetry Possibilities to discern between the 2HDM and the MSSM...

Work in progress

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	ooooooooooo	00	

Benchmarks

Parameters used

	Set I	Set II	Set III	Set IV
<i>M_h</i> [GeV]	115	150	200	200
<i>M</i> _{H[±]} [GeV]	105	105	300	350
<i>M_{H⁰}</i> [GeV]	165	200	250	250
<i>M</i> _A [GeV]	100	110	290	340
$tan \beta$	1.7	1.7	1	1
$\sin \alpha$	-0.86	-0.86	-0.82	-0.82
λ_5	-25	-25	0	0

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	0000000000	00	

CompAZ

Parametrization of the photon energy spectrum

Compton formula

corrected for:

- nonlinear effects
- angular correlations
- two photon scattering

 electron rescattering

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions

$\sigma(\gamma\gamma \to H) \& \sigma(\gamma\gamma \to A)$

Maximum cross section

	Set I	Set II	Set III	Set IV
<i>М_н</i> ₀ [GeV]	165	200	250	250
<i>M</i> _{A⁰} [GeV]	100	110	290	340
<i>M</i> _{H[±]} [GeV]	105	105	300	350
$\sigma_{Max}(\gamma\gamma \rightarrow H^0)$ [pb]	0.076	0.067	0.012	0.012
$\sigma_{Max}(\gamma\gamma \rightarrow A^0)$ [pb]	0.011	0.011	0.058	0.12
	Type I			

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions

- Perturbative unitarity on the Higgs self-couplings They could receive large enhancements at large tan β.
 We use a condition à la Lee-Quigg-Thacker
 - trilinear Higgs self coupling

$$|C_{HHH}| \le \left| \lambda_{HHH}^{(SM)} (M_{h_{SM}} \simeq 1 \text{ TeV}) \right| = 3 \frac{M_{h_{SM}}^{2}}{v} \Big|_{M_{h_{rest}} = 1 \text{ TeV}}$$

quartic Higgs self coupling

$$C_{HHHH} | \leq \left| \lambda_{HHHH}^{(SM)}(M_{h_{SM}} \simeq 1 \text{ TeV}) \right| = \left. \Im \frac{M_{h_{SM}}^2}{v^2} \right|_{M_{h_{SM}} = 1 \text{ TeV}}$$

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions

 Kanemura, Kasai & Okada, 1999
 Require that the running coupling constants of the Higgs self-couplings and the Yukawa couplings do not blow up below a certain energy scale Λ

> $\lambda_i(\mu) < 8\pi$ $y_t(\mu) < 4\pi$

for a renormalization scale μ less than Λ .

2HDM	Constraints	$\gamma\gamma$ scattering	e ⁺ e ⁻ scattering	Conclusions

Akeroyd, Arhrib & Naimi, 2000 In very high energy collisions, it can be shown that the dominant contribution to the amplitude of the two-body scattering $S_1 S_2 \rightarrow S_3 S_4$ is the one which is mediated by the quartic coupling. Therefore the unitarity reduces to a constraint on the quartic coupling, $|C(S_1, S_2, S_3, S_4)| \leq 8\pi$ $e_1 = 2\lambda_3 - \lambda_4 - \frac{\lambda_5}{2} + \frac{5}{2}\lambda_6$ $e_2 = 2\lambda_3 + \lambda_4 - \frac{\lambda_5}{2} + \frac{1}{2}\lambda_6$ $f_+ = 2\lambda_3 - \lambda_4 + \frac{5}{2}\lambda_5 - \frac{1}{2}\lambda_6$ $f_{-} = 2\lambda_3 + \lambda_4 + \frac{1}{2}\lambda_5 - \frac{1}{2}\lambda_6$ $f_1 = f_2 = 2\lambda_3 + \frac{1}{2}\lambda_5 + \frac{1}{2}\lambda_6$ $a_{\pm} = 3(\lambda_1 + \lambda_2 + 2\lambda_3) \pm \sqrt{9(\lambda_1 - \lambda_2)^2 + (4\lambda_3 + \lambda_4 + \frac{1}{2}(\lambda_5 + \lambda_6))^2}$ $b_{\pm} = \lambda_1 + \lambda_2 + 2\lambda_3 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + \frac{1}{4}(-2\lambda_4 + \lambda_5 + \lambda_6)^2}$ $c_{\pm} = \lambda_1 + \lambda_2 + 2\lambda_3 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + \frac{1}{4}(\lambda_5 - \lambda_6)^2}$

2HDM	Constraints	γγ scattering	e ⁺ e ⁻ scattering	Conclusions
0000	0000	0000000000	00	

Using $\tan \beta = 1.70$, $\sin \alpha = -0.86$, $\lambda_5 = -25$ and Set I.

SA

Yukawas: Enhancement in %, for $\lambda_5 = \lambda_6$ and Set III