Determining the WIMP mass using the complementarity between direct and indirect searches and the ILC

Nicolás Bernal

LPT - Orsay Université Paris XI

PLANCK 08

arXiv:0804.1976 [hep-ph] and arXiv:0805.2241 [hep-ph], in collaboration with A. GOUDELIS, Y. MAMBRINI & C. MUÑOZ

May 21st, 2008

Direct detection

Direct detection experiments are designed to detect **dark matter particles** by their **elastic collision with target nuclei**, placed in a detector on the Earth.

XENON 100 kg

PMT Arry Proportion PMT Arry Proportion PMT Arry Bottom PMT Arry

Recoil rates

$$\frac{dN}{dE_r} = \frac{\sigma_{\chi-p} \cdot \rho_0}{2 M_r^2 m_{\chi}} F(E_r)^2 \int_{v_{\min}(E_r)}^{v_{esc}} \frac{f(v)}{v} dv$$

Reduced mass $M_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$

N: number of scatterings (s⁻¹kg⁻¹) E_r : nuclear recoil energy ~few keV m_{χ} : WIMP mass $\sigma_{\chi-p}$: WIMP-proton cross-section (Assuming spin-independent coupling) ρ_0 : local WIMP density 0.3 GeV cm⁻³ f(v): WIMP local vel. distribution M.B. F: nuclear form factor Woods-Saxon

7 energy bins [4.5, 26.9] keV

Direct detection

Discrimination method: χ^2

Xenon100 typical signal after 3 years

Direct detection experiments are designed to detect dark matter particles by their elastic collision with target nuclei, placed in a detector on the Earth.

XENON 100 kg

Direct detection

Direct detection experiments can determine the mass of the WIMP by measuring the distribution of the recoil energy.

Wimp mass and cross section discrimination

a m_{χ} ≤ 10 GeV → detector energy threshold **a** m_{χ} ≥ 500 GeV → only a lower limit

★ Independent of the microscopic theory.

 Better discrimination capacity for small masses
 big WIMP-proton cross-sections

Indirect detection

Gamma-ray flux

$$\Phi_{\gamma}(E_{\gamma},\psi) = \sum_{i} \frac{dN_{\gamma}^{i}}{dE_{\gamma}} \langle \sigma_{i} \nu \rangle \frac{1}{8\pi m_{\chi}^{2}} \int_{los} \rho(r)^{2} dl$$

 $\begin{array}{l} \frac{dN}{dE}: \text{ spectrum of secondary particles} \\ E_{\gamma}: \text{ gamma energy} \\ \langle \sigma \mathbf{v} \rangle: \text{ thermally averaged annihilation cross-section} \\ \langle \sigma \mathbf{v} \rangle \sim 3 \cdot 10^{-26} \text{ cm}^3 \text{s}^{-1} \end{array}$

 $\rho(r)$: dark matter halo profile

$$\rho(r) = \frac{\rho_0}{(r/R)^{\gamma} [1 + (r/R)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$

$$\rho(r) \propto r^{-\gamma} \text{ at the galactic center } r \ll R$$

	R (kpc)	α	β	γ
NFW	20.0	1.0	3.0	1.0
Moore	28.0	1.5	3.0	1.5
lso	3.5	2.0	2.0	0

We study the ability of **gamma-ray** experiments to identify **DM annihilation** radiation from the Galactic Center region by using spectral information.

The spectrum depends on the nature of χ $\chi \overline{\chi} \rightarrow b \overline{b}, \underline{WW}, ZZ, \tau \overline{\tau}, HZ \cdots \rightarrow \gamma + \dots$

Indirect detection

Once gamma rays are identified as having been produced in DM annihilations, such observations could then be used to measure the characteristics of the DM particle, including its m_{χ} and $\langle \sigma v \rangle$. Such determinations are an important step towards identifying the particle nature of DM.

Conservative background: interpolation between HESS and EGRET

Glast Gamma-ray telescope (June '08)

25 energy bins distributed [1, 300] GeV $2^{\circ} \times 2^{\circ}$ field view $\rightarrow \Delta \Omega = 4 \cdot 10^{-3}$ sr Acceptance $A = 10^4$ cm²sr We examine the inner (~ 7 kpc) Milky Way

$$\chi^2 = \sum_{i=1}^{n} \left(\frac{\Phi_i^{\text{tot}} - \Phi_i^{\text{bkg}}}{\sigma_i} \right)^2; \quad \sigma_i = \sqrt{\frac{\Phi^{\text{tot}}}{A \cdot T}}$$

★ Independent of the microscopic theory
□ Strong dependence on the halo profile
□ Coannihilation not taken into account
□ No clumpiness included

Indirect detection

Gamma-ray experiments can determine the mass of the WIMP by measuring the spectrum from the galactic center

25 energy bins distributed [1,300] GeV $2^{\circ} \times 2^{\circ}$ field view $\rightarrow \Delta \Omega = 4 \cdot 10^{-3}$ sr Acceptance $A = 10^4$ cm²sr

- ★ Independent of the microscopic theory
 Better resolution for smaller masses (strong differences on the spectrum form in the [1, 300]GeV region)
- X Strong dependence on the halo profile
- x coannihilation not taken into account

Colliders: ILC

Can cosmology teach us about true DM signals at colliders?

Birkedal, Matchev, Perelstein, arXiv:hep-ph/0403004

→ Cosmology provides a precise, model-independent measurement of $\sigma(\chi + \chi \rightarrow SM + SM)$

Assumptions:

- ☞ Generic mass spectrum (no resonances, no coannihilations)
- **☎** At the time of χ decoupling, the only important reactions are $\chi + \chi \leftrightarrow X_i + X_j$
- **a** Non-relativistic WIMPs, can be expanded as: $\sigma_i v = \sigma_i^{(0)} + \sigma_i^{(1)} v^2 + \dots$
- ☎ Dominated by either s-wave or p-wave

Colliders: ILC

Cross section $e^+e^- \rightarrow \chi + \chi + \gamma$:

$$\frac{d\sigma}{dx\,d\cos\theta}(e^+e^- \to 2\chi + \gamma) \simeq \frac{\alpha\,\kappa_e\,\sigma_{an}}{16\,\pi}\,\frac{1+(1-x)^2}{x}\,\frac{1}{\sin^2\theta}\,2^{2J_0}\,(2S_{\chi}+1)^2\left(1-\frac{4m_{\chi}^2}{(1-x)s}\right)^{1/2+J_0}$$

 $\begin{aligned} x &\equiv 2 \cdot E_{\gamma}/s \\ \theta: \text{Photon emission angle} \\ \sigma_{an}: \text{Total annihilation cross-section} \sim 7 \text{ pb} \\ J_0: \text{Dominant (s- or t-) annihilation channel} \\ S_{\chi}: \text{WIMP's spin} \\ \kappa_e &= \sigma_e^{(J_0)}/\sigma_{an}: \text{Annihilation fraction into } e^+e^- \text{ pairs} \end{aligned}$

- [∞] Non-relativistic WIMPs → kinematical cuts: $\frac{\sqrt{s}}{2}\left(1-\frac{8m\chi^2}{s}\right) \le E_{\gamma} \le \frac{\sqrt{s}}{2}\left(1-\frac{4m\chi^2}{s}\right)$ [∞] Main background: $e^+e^- \to vv\gamma$
- ★ Independent of the microscopic theory.

ILC: $\sqrt{s} = 500$ GeV unpolarized beams, 500 pb⁻¹ integrated luminosity

- ☎ Significant improvement in mass resolution for polarized beams
- Discrimination capacity peaks significantly for $m_{\chi} = 175 \text{ GeV}$ (uncut spectrum → bigger phase space)

Complementarity

Direct detection Ability to reconstruct the WIMP mass:

1 ····X	7.EITOIT	
50	± 1	[
100	± 6	$\sigma_{\chi-p} = 10^{\circ} \text{ pb}$
175	-25/+35	S years taking data
500	-250/ * *	

Complementarity

Indirect & Direct detection Ability to reconstruct the WIMP mass:

m_{χ}	XENON	GLAST
50	± 1	± 8
100	± 6	-25/+32
175	-25/+35	-70/+100
500	-250/ * *	-350/ * *

 $\langle \sigma \mathbf{v} \rangle = 3 \cdot 10^{26} \text{ cm}^3 \text{s}^{-1}$ NFW DM halo profile 3 years taking data

Complementarity

Indirect & Direct detection + ILC Ability to reconstruct the WIMP mass:

mχ	XENON	GLAST	ILC
50	± 1	± 8	**
100	± 6	-25/+32	-40/+20
175	-25/+35	-70/+100	-20/+15
500	-250/ * *	-350/ * *	**

 The precision is comparable
 Possibility to cover different regions in the parameter space
 ★ Model independent analysis

Bonus track

Bonus track

